1
|
Maeda Y. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. MEMBRANES 2024; 14:221. [PMID: 39452833 PMCID: PMC11509221 DOI: 10.3390/membranes14100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As concerns grow over the depletion of precious freshwater resources, a global movement is gaining momentum to utilize previously overlooked or challenging water sources, collectively known as "marginal water". Fouling is a serious concern when treating marginal water. In RO/NF, biofouling, organic and colloidal fouling, and scaling are particularly problematic. Of these, organic fouling, along with biofouling, has been considered difficult to manage. The major organic foulants studied are natural organic matter (NOM) for surface water and groundwater and effluent organic matter (EfOM) for municipal wastewater reuse. Polymeric substances such as sodium alginate, humic acid, and proteins have been used as model substances of EfOM. Fouling by low molecular weight organic compounds (LMWOCs) such as surfactants, phenolics, and plasticizers is known, but there have been few comprehensive reports. This review aims to shed light on fouling behavior by LMWOCs and its mechanism. LMWOC foulants reported so far are summarized, and the role of LMWOCs is also outlined for other polymeric membranes, e.g., UF, gas separation membranes, etc. Regarding the mechanism of fouling, it is explained that the fouling is caused by the strong interaction between LMWOC and the membrane, which causes the water permeation to be hindered by LMWOCs adsorbed on the membrane surface (surface fouling) and sorbed inside the membrane pores (internal fouling). Adsorption amounts and flow loss caused by the LMWOC fouling were well correlated with the octanol-water partition coefficient (log P). In part 2, countermeasures to solve this problem and applications using the LMWOCs will be outlined.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
2
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Xie T, Wang H, Chen K, Li F, Zhao S, Sun H, Yang X, Hou Y, Li P, Niu QJ. High-performance polyethyleneimine based reverse osmosis membrane fabricated via spin-coating technology. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Zhang W, Ji GL, Wang J, He Y, Liu L, Liu F. In-situ formation of epoxy derived polyethylene glycol crosslinking network on polyamide nanofiltration membrane with enhanced antifouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Wang Y, Bao L, Sun J, Ding Y, Shi J, Duan Z, Chen Z. Superhydrophobic fluorinated microspheres for fluorous affinity chromatography. J Chromatogr A 2022; 1680:463428. [PMID: 36001909 DOI: 10.1016/j.chroma.2022.463428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Fluorous affinity chromatography has received growing attention in separation and purification of fluoro compounds, but the wettability of the fluorinated stationary phases is seldom noticed. Here, we construct a series of micro-sized fluorine-containing microspheres by solvothermal precipitation polymerization. The fluorinated microspheres could be obtained with narrow size distribution at even high monomer loading of 15 wt%. Through alternating fluoro monomer, both the particle size and the wettability of the microsphere array could be tuned. Among them, the poly(divinylbenzene -dodecafluoroheptyl methacrylate), P(DVB-DFHMA), microsphere (6.1 μm) arrays displays superhydrophobicity with 153.2° water contact angle. The P(DVB-DFHMA) fluorinated microspheres (7.58% fluorine content) can be packed into steel-less columns as stationary phase for high-performance liquid chromatography. The retention mechanism of the fluorinated column is proven to be the specific fluorine-fluorine interaction. Compared to the commercial C18 silica column, the fluorinated column can completely separate fluorine-containing compounds under high water content mobile phase, including small fluoro molecules and fluoro macromolecules, at much lower back pressure by fluorous affinity.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liuqian Bao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiajing Sun
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Ding
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiasheng Shi
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhengyu Duan
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
6
|
Chitosan/polyvinylpyrrolidone/polyvinyl alcohol/carbon nanotubes dual layers nanofibrous membrane constructed by electrospinning-electrospray for water purification. Carbohydr Polym 2022; 294:119756. [DOI: 10.1016/j.carbpol.2022.119756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022]
|
7
|
Ismail MF, Islam MA, Khorshidi B, Tehrani-Bagha A, Sadrzadeh M. Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications. Adv Colloid Interface Sci 2022; 299:102524. [PMID: 34620491 DOI: 10.1016/j.cis.2021.102524] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023]
Abstract
Thin-film composite (TFC) membranes are the most widely used membranes for low-cost and energy-efficient water desalination processes. Proper control over the three influential surface parameters, namely wettability, roughness, and surface charge, is vital in optimizing the TFC membrane surface and permeation properties. More specifically, the surface properties of TFC membranes are often tailored by incorporating novel special wettability materials to increase hydrophilicity and tune surface physicochemical heterogeneity. These essential parameters affect the membrane permeability and antifouling properties. The membrane surface characterization protocols employed to date are rather controversial, and there is no general agreement about the metrics used to evaluate the surface hydrophilicity and physicochemical heterogeneity. In this review, we surveyed and critically evaluated the process that emerged for understanding the membrane surface properties using the simple and economical contact angle analysis technique. Contact angle analysis allows the estimation of surface wettability, surface free energy, surface charge, oleophobicity, contact angle hysteresis, and free energy of interaction; all coordinatively influence the membrane permeation and fouling properties. This review will provide insights into simplifying the evaluation of membrane properties by contact angle analysis that will ultimately expedite the membrane development process by reducing the time and expenses required for the characterization to confirm the success and the impact of any modification.
Collapse
|