1
|
Sukwijit C, Seubsai A, Charoenchaitrakool M, Sudsakorn K, Niamnuy C, Roddecha S, Prapainainar P. Production of PLA/cellulose derived from pineapple leaves as bio-degradable mulch film. Int J Biol Macromol 2024; 270:132299. [PMID: 38735609 DOI: 10.1016/j.ijbiomac.2024.132299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Mulch films were fabricated from polylactic acid (PLA) with cellulose nanocrystals (PNC) extracted from pineapple leaves. The PNC was modified by incorporating 4 wt% triethoxyvinylsilane (TEVS), designated as 4PNC, to enhance its interaction with PLA. The films incorporated varying concentrations of PNC (1, 2, 4, and 8 wt%). The results indicated that higher PNC concentrations increased the water vapor permeability (WVP) and biodegradability of the composite films, while reducing light transmission. Films containing 4PNC, particularly at 4 wt% (PLA/4PNC-4), exhibited an 11.18 % increase in elongation at break compared to neat PLA films. Moreover, these films showed reduced light transmission, correlating with decreased weed growth, reduced WVP, and enhanced barrier properties, indicative of improved soil moisture retention. Additionally, PLA films with 4PNC demonstrated greater thermal degradation stability than those with unmodified PNC, suggesting enhanced heat resistance. However, there was no significant difference in aerobic biodegradation between the PLA films with PNC and those with 4PNC. This study confirms that TEVS-modified cellulose significantly enhances the properties of bio-composite films, making them more suitable for mulch film applications.
Collapse
Affiliation(s)
- Chachtapoom Sukwijit
- National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Anusorn Seubsai
- National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Research Network of NANOTEC - KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Manop Charoenchaitrakool
- National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Kandis Sudsakorn
- National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Chalida Niamnuy
- National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Research Network of NANOTEC - KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Supacharee Roddecha
- National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Paweena Prapainainar
- National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Research Network of NANOTEC - KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Yue S, Zhang T, Wang S, Han D, Huang S, Xiao M, Meng Y. Recent Progress of Biodegradable Polymer Package Materials: Nanotechnology Improving Both Oxygen and Water Vapor Barrier Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:338. [PMID: 38392711 PMCID: PMC10892516 DOI: 10.3390/nano14040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
Biodegradable polymers have become a topic of great scientific and industrial interest due to their environmentally friendly nature. For the benefit of the market economy and environment, biodegradable materials should play a more critical role in packaging materials, which currently account for more than 50% of plastic products. However, various challenges remain for biodegradable polymers for practical packaging applications. Particularly pertaining to the poor oxygen/moisture barrier issues, which greatly limit the application of current biodegradable polymers in food packaging. In this review, various strategies for barrier property improvement are summarized, such as chain architecture and crystallinity tailoring, melt blending, multi-layer co-extrusion, surface coating, and nanotechnology. These strategies have also been considered effective ways for overcoming the poor oxygen or water vapor barrier properties of representative biodegradable polymers in mainstream research.
Collapse
Affiliation(s)
- Shuangshuang Yue
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Tianwei Zhang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- China Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
| |
Collapse
|
3
|
Liu J, Huang H, Zhou D. Surface modification of cellulose nanofibers by oxidative polymerization of tannic acid/ethanediamine and their polyvinylalcohol composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.53049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Liu
- College of Material Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Danling Zhou
- College of Health and Social Care Shanghai Urban Construction Vocational College Shanghai China
| |
Collapse
|