1
|
Ge H, Chen J, Yu L, Liu X, Zhang L, Gao Q, Zhu P, Gao C. Bio-inspired eco-friendly wheat gluten based underwater adhesives with instant, robust and harsh environment adhesion properties. Int J Biol Macromol 2025; 311:143925. [PMID: 40328000 DOI: 10.1016/j.ijbiomac.2025.143925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
Underwater adhesives are essential in industry, biomedical field, as well as our daily life. Herein, inspired by the natural plant protein, an eco-friendly, cost-effective and renewable bio-resources gliadin/TA adhesive was developed by a facile and effective strategy. The prepared gliadin/TA adhesive displayed exceptional substrate universality, rapid self-healing ability, instant and long-term underwater adhesion, strong affinity and good environmental adaptability. In the dry environment, the glued woods with a lab-shear bond can lift a weight of 11.62 kg object with a bond area was 2.15 cm2. In the water, the gliadin/TA adhesives can successfully lift 1 kg stainless steel and maintained effective adhesion for up to 50 days without detachment. Meanwhile, the gliadin/TA adhesives exhibited excellent environmental adaptability, including 1 M NaCl, extreme acidic (pH = 2), alkaline (pH = 14) and high-temperature (48 °C) aqueous solutions. Additionally, the potential applications of gliadin/TA adhesives have been proved by repairing porcine skin and bones, bonding wood particles together rapidly to withstand water-flushing, plugging leaky containers and broken pig intestine. This work presents a distinctive and facile strategy for designing and developing the eco-friendly, cost-effective and renewable bio-resources underwater adhesives.
Collapse
Affiliation(s)
- Haohan Ge
- 1nstitute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Chen
- 1nstitute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lanting Yu
- School of Literature, Nanjing normal university, Nanjing 210097, China
| | - Xian Liu
- 1nstitute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Liang Zhang
- 1nstitute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiang Gao
- 1nstitute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Peizhi Zhu
- 1nstitute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chunxia Gao
- 1nstitute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
2
|
Wang Y, Gao X, Wu J, Jiang M, Zhang H, Yan C. Antifreezing/Antiswelling Hydrogels: Synthesis Strategies and Applications as Flexible Motion Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58100-58120. [PMID: 39422229 DOI: 10.1021/acsami.4c13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hydrogels are excellent materials for fabricating flexible electronic devices, such as flexible sensors. However, obtaining hydrogels with superior swelling capacity and good hydrophilicity suitable for use under extreme environments, such as cold and underwater conditions, is still challenging due to the occurrence of freezing and excessive swelling. Alternatively, hydrogels with antifreezing and antiswelling capacities exhibit minimal changes in their physical and chemical properties under extreme conditions with retained original performance, such as mechanical properties, conductivity, and adhesiveness, making them suitable for various applications. Accordingly, various multifunctional antifreezing/antiswelling hydrogels meeting practical application requirements have been developed thanks to the advancement of hydrogel technology. Examples include flexible sensors for monitoring various motion signals, such as changes during sports events. However, comprehensive reviews describing these hydrogels in terms of synthesis and application in sensors are still lacking. Herein, the design and synthetic strategies of antifreezing/antiswelling hydrogels reported in recent years are comprehensively analyzed along with their mechanisms and applications in flexible motion sensors. This review aims to provide a comprehensive understanding of the research of antifreezing/antiswelling hydrogels and offer valuable insights for researchers engaged in the development of advanced materials suitable for practical applications.
Collapse
Affiliation(s)
- Yutong Wang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Xing Gao
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Jie Wu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hongchao Zhang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Chufan Yan
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| |
Collapse
|
3
|
Zheng D, Zhang C, Chen Z, Zhu P, Gao C. Tough and anti‐swelling γ‐polyglutamic acid/polyvinyl alcohol hydrogels for wearable sensors. J Appl Polym Sci 2023. [DOI: 10.1002/app.53792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Deyang Zheng
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Chenyang Zhang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Ziwei Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
4
|
Wu Y, Xing W, Wen J, Wu Z, Zhang Y, Zhang H, Wu H, Yao H, Xue H, Gao J. Mixed solvent exchange enabled high-performance polymeric gels. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Wei J, Du C, Li P, Zhou X, Zhou C, Yang S. Molecular-assembly route to fabricate a robust flexible hydrogel membrane for high-efficient and durable solar water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|