1
|
Froesel M, Gacoin M, Clavagnier S, Hauser M, Goudard Q, Ben Hamed S. Macaque claustrum, pulvinar and putative dorsolateral amygdala support the cross-modal association of social audio-visual stimuli based on meaning. Eur J Neurosci 2024; 59:3203-3223. [PMID: 38637993 DOI: 10.1111/ejn.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
Abstract
Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.
Collapse
Affiliation(s)
- Mathilda Froesel
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Maëva Gacoin
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Simon Clavagnier
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Marc Hauser
- Risk-Eraser, West Falmouth, Massachusetts, USA
| | - Quentin Goudard
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| |
Collapse
|
2
|
Grijseels DM, Prendergast BJ, Gorman JC, Miller CT. The neurobiology of vocal communication in marmosets. Ann N Y Acad Sci 2023; 1528:13-28. [PMID: 37615212 PMCID: PMC10592205 DOI: 10.1111/nyas.15057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.
Collapse
Affiliation(s)
- Dori M Grijseels
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Brendan J Prendergast
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
4
|
Wang X, Zhang Y, Zhu L, Bai S, Li R, Sun H, Qi R, Cai R, Li M, Jia G, Cao X, Schriver KE, Li X, Gao L. Selective corticofugal modulation on sound processing in auditory thalamus of awake marmosets. Cereb Cortex 2022; 33:3372-3386. [PMID: 35851798 PMCID: PMC10068278 DOI: 10.1093/cercor/bhac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cortical feedback has long been considered crucial for the modulation of sensory perception and recognition. However, previous studies have shown varying modulatory effects of the primary auditory cortex (A1) on the auditory response of subcortical neurons, which complicate interpretations regarding the function of A1 in sound perception and recognition. This has been further complicated by studies conducted under different brain states. In the current study, we used cryo-inactivation in A1 to examine the role of corticothalamic feedback on medial geniculate body (MGB) neurons in awake marmosets. The primary effects of A1 inactivation were a frequency-specific decrease in the auditory response of most MGB neurons coupled with an increased spontaneous firing rate, which together resulted in a decrease in the signal-to-noise ratio. In addition, we report for the first time that A1 robustly modulated the long-lasting sustained response of MGB neurons, which changed the frequency tuning after A1 inactivation, e.g. some neurons are sharper with corticofugal feedback and some get broader. Taken together, our results demonstrate that corticothalamic modulation in awake marmosets serves to enhance sensory processing in a manner similar to center-surround models proposed in visual and somatosensory systems, a finding which supports common principles of corticothalamic processing across sensory systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Yuanqing Zhang
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Lin Zhu
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Runze Qi
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Min Li
- Division of Psychology , State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875 , China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Xinyuan Cao
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Kenneth E Schriver
- School of Brain Science and Brain Medicine , Zhejiang University School of Medicine, Hangzhou 310020 , China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
- Department of Neurobiology , NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310020 , China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
- Department of Neurobiology , NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310020 , China
| |
Collapse
|
5
|
Perez-Rando M, Elvira UKA, García-Martí G, Gadea M, Aguilar EJ, Escarti MJ, Ahulló-Fuster MA, Grasa E, Corripio I, Sanjuan J, Nacher J. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. Neuroimage Clin 2022; 35:103070. [PMID: 35667173 PMCID: PMC9168692 DOI: 10.1016/j.nicl.2022.103070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Analysis of structural MRI images using a probabilistic atlas for segmentation of several nuclei of the thalamus. Comparison of chronic patients with schizophrenia, with and without auditory hallucinations and matched healthy controls. Volumetric reductions in patients with AH vs controls: Medial geniculate nucleus, anterior pulvinar nucleus and lateral and medial mediodorsal nuclei. In patients without AH we found reductions in the volume of the pulvinar and mediodorsal nuclei, but not in the medial geniculate nucleus. Found also some significant correlations between the volume of these nuclei and the total score of the PSYRATS scale.
The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Uriel K A Elvira
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Institutes of Biomedical Technologies and Neuroscience, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gracian García-Martí
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Marien Gadea
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain
| | - Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy. Faculty of Nursing, Physiotherapy and Podiatry. Universidad Complutense de Madrid, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
6
|
Jeschke M, Ohl FW, Wang X. Effects of Cortical Cooling on Sound Processing in Auditory Cortex and Thalamus of Awake Marmosets. Front Neural Circuits 2022; 15:786740. [PMID: 35069125 PMCID: PMC8766342 DOI: 10.3389/fncir.2021.786740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.
Collapse
Affiliation(s)
- Marcus Jeschke
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany,*Correspondence: Marcus Jeschke
| | - Frank W. Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Xiaoqin Wang
| |
Collapse
|
7
|
Homman-Ludiye J, Mundinano IC, Kwan WC, Bourne JA. Extensive Connectivity Between the Medial Pulvinar and the Cortex Revealed in the Marmoset Monkey. Cereb Cortex 2021; 30:1797-1812. [PMID: 31711181 DOI: 10.1093/cercor/bhz203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 11/13/2022] Open
Abstract
The medial pulvinar (PM) is a multimodal associative thalamic nucleus, recently evolved in primates. PM participates in integrative and modulatory functions, including directed attention, and consistently exhibits alterations in disorders such as schizophrenia and autism. Despite essential cognitive functions, the cortical inputs to the PM have not been systematically investigated. To date, less than 20 cortices have been demonstrated to project to PM. The goal of this study was to establish a comprehensive map of the cortical afferents to PM in the marmoset monkey. Using a magnetic resonance imaging-guided injection approach, we reveal 62 discrete cortices projecting to the adult marmoset PM. We confirmed previously reported connections and identified further projections from discrete cortices across the temporal, parietal, retrosplenial-cingulate, prefrontal, and orbital lobes. These regions encompass areas recipient of PM efferents, demonstrating the reciprocity of the PM-cortical connectivity. Moreover, our results indicate that PM neurones projecting to distinct cortices are intermingled and form multimodal cell clusters. This microunit organization, believed to facilitate cross-modal integration, contrasts with the large functional subdivisions usually observed in thalamic nuclei. Altogether, we provide the first comprehensive map of PM cortical afferents, an essential stepping stone in expanding our knowledge of PM and its function.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Inaki Carril Mundinano
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - William C Kwan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
A multisensory perspective onto primate pulvinar functions. Neurosci Biobehav Rev 2021; 125:231-243. [PMID: 33662442 DOI: 10.1016/j.neubiorev.2021.02.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Perception in ambiguous environments relies on the combination of sensory information from various sources. Most associative and primary sensory cortical areas are involved in this multisensory active integration process. As a result, the entire cortex appears as heavily multisensory. In this review, we focus on the contribution of the pulvinar to multisensory integration. This subcortical thalamic nucleus plays a central role in visual detection and selection at a fast time scale, as well as in the regulation of visual processes, at a much slower time scale. However, the pulvinar is also densely connected to cortical areas involved in multisensory integration. In spite of this, little is known about its multisensory properties and its contribution to multisensory perception. Here, we review the anatomical and functional organization of multisensory input to the pulvinar. We describe how visual, auditory, somatosensory, pain, proprioceptive and olfactory projections are differentially organized across the main subdivisions of the pulvinar and we show that topography is central to the organization of this complex nucleus. We propose that the pulvinar combines multiple sources of sensory information to enhance fast responses to the environment, while also playing the role of a general regulation hub for adaptive and flexible cognition.
Collapse
|
9
|
Belekhova MG, Kenigfest NB, Chmykhova NM. Evolutionary Formation and Functional
Significance
of the Core–Belt Pattern of Neural Organization of Rostral Auditory
Centers in Vertebrates. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020040018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Ohga S, Tsukano H, Horie M, Terashima H, Nishio N, Kubota Y, Takahashi K, Hishida R, Takebayashi H, Shibuki K. Direct Relay Pathways from Lemniscal Auditory Thalamus to Secondary Auditory Field in Mice. Cereb Cortex 2019; 28:4424-4439. [PMID: 30272122 PMCID: PMC6215474 DOI: 10.1093/cercor/bhy234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/01/2018] [Indexed: 12/19/2022] Open
Abstract
Tonotopy is an essential functional organization in the mammalian auditory cortex, and its source in the primary auditory cortex (A1) is the incoming frequency-related topographical projections from the ventral division of the medial geniculate body (MGv). However, circuits that relay this functional organization to higher-order regions such as the secondary auditory field (A2) have yet to be identified. Here, we discovered a new pathway that projects directly from MGv to A2 in mice. Tonotopy was established in A2 even when primary fields including A1 were removed, which indicates that tonotopy in A2 can be established solely by thalamic input. Moreover, the structural nature of differing thalamocortical connections was consistent with the functional organization of the target regions in the auditory cortex. Retrograde tracing revealed that the region of MGv input to a local area in A2 was broader than the region of MGv input to A1. Consistent with this anatomy, two-photon calcium imaging revealed that neuronal responses in the thalamocortical recipient layer of A2 showed wider bandwidth and greater heterogeneity of the best frequency distribution than those of A1. The current study demonstrates a new thalamocortical pathway that relays frequency information to A2 on the basis of the MGv compartmentalization.
Collapse
Affiliation(s)
- Shinpei Ohga
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Masao Horie
- Department of Morphological Sciences, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - Hiroki Terashima
- NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan
| | - Nana Nishio
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Yamato Kubota
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| |
Collapse
|
11
|
Lin MK, Takahashi YS, Huo BX, Hanada M, Nagashima J, Hata J, Tolpygo AS, Ram K, Lee BC, Miller MI, Rosa MGP, Sasaki E, Iriki A, Okano H, Mitra P. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. eLife 2019; 8:e40042. [PMID: 30720427 PMCID: PMC6384052 DOI: 10.7554/elife.40042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Understanding the connectivity architecture of entire vertebrate brains is a fundamental but difficult task. Here we present an integrated neuro-histological pipeline as well as a grid-based tracer injection strategy for systematic mesoscale connectivity mapping in the common marmoset (Callithrix jacchus). Individual brains are sectioned into ~1700 20 µm sections using the tape transfer technique, permitting high quality 3D reconstruction of a series of histochemical stains (Nissl, myelin) interleaved with tracer labeled sections. Systematic in-vivo MRI of the individual animals facilitates injection placement into reference-atlas defined anatomical compartments. Further, by combining the resulting 3D volumes, containing informative cytoarchitectonic markers, with in-vivo and ex-vivo MRI, and using an integrated computational pipeline, we are able to accurately map individual brains into a common reference atlas despite the significant individual variation. This approach will facilitate the systematic assembly of a mesoscale connectivity matrix together with unprecedented 3D reconstructions of brain-wide projection patterns in a primate brain.
Collapse
Affiliation(s)
- Meng Kuan Lin
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | | | - Bing-Xing Huo
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Mitsutoshi Hanada
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Jaimi Nagashima
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Junichi Hata
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | | | | | - Brian C Lee
- Center for Imaging ScienceJohns Hopkins UniversityMarylandUnited States
| | - Michael I Miller
- Center for Imaging ScienceJohns Hopkins UniversityMarylandUnited States
| | - Marcello GP Rosa
- Department of Physiology and Biomedicine, Discovery InstituteMonash UniversityMelbourneAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionClaytonAustralia
| | - Erika Sasaki
- Central Institute for Experimental AnimalsKawasakiJapan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive DevelopmentRIKEN Center for Brain ScienceWakoJapan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Partha Mitra
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
12
|
Homman-Ludiye J, Bourne JA. The medial pulvinar: function, origin and association with neurodevelopmental disorders. J Anat 2019; 235:507-520. [PMID: 30657169 DOI: 10.1111/joa.12932] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 11/25/2022] Open
Abstract
The pulvinar is primarily referred to for its role in visual processing. However, the 'visual pulvinar' only encompasses the inferior and lateral regions of this complex thalamic nucleus. The remaining medial portion (medial pulvinar, PM) establishes distinct cortical connectivity and has been associated with directed attention, executive functions and working memory. These functions are particularly impaired in neurodevelopmental disorders, including schizophrenia and attention deficit and hyperactivity disorder (ADHD), both of which have been associated with abnormal PM architecture and connectivity. With these disorders becoming more prevalent in modern societies, we review the literature to better understand how the PM can participate in the pathophysiology of cognitive disorders and how a better understanding of the development and function of this thalamic nucleus, which is most likely exclusive to the primate brain, can advance clinical research and treatments.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Top-down, contextual entrainment of neuronal oscillations in the auditory thalamocortical circuit. Proc Natl Acad Sci U S A 2018; 115:E7605-E7614. [PMID: 30037997 PMCID: PMC6094129 DOI: 10.1073/pnas.1714684115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our results indicate that nonhuman primates detect complex repeating acoustic sequences in a continuous auditory stream, which is an important precursor for human speech learning and perception. We demonstrate that oscillatory entrainment, known to support the attentive perception of rhythmic stimulus sequences, can occur for rhythms defined solely by stimulus context rather than physical boundaries. As opposed to acoustically driven entrainment by rhythmic tone sequences demonstrated previously, this form of entrainment relies on the brain’s ability to group auditory inputs based on their statistical regularities. The internally initiated, context-driven modulation of excitability in the medial pulvinar prior to A1 supports the notion of top-down entrainment. Prior studies have shown that repetitive presentation of acoustic stimuli results in an alignment of ongoing neuronal oscillations to the sequence rhythm via oscillatory entrainment by external cues. Our study aimed to explore the neural correlates of the perceptual parsing and grouping of complex repeating auditory patterns that occur based solely on statistical regularities, or context. Human psychophysical studies suggest that the recognition of novel auditory patterns amid a continuous auditory stimulus sequence occurs automatically halfway through the first repetition. We hypothesized that once repeating patterns were detected by the brain, internal rhythms would become entrained, demarcating the temporal structure of these repetitions despite lacking external cues defining pattern on- or offsets. To examine the neural correlates of pattern perception, neuroelectric activity of primary auditory cortex (A1) and thalamic nuclei was recorded while nonhuman primates passively listened to streams of rapidly presented pure tones and bandpass noise bursts. At arbitrary intervals, random acoustic patterns composed of 11 stimuli were repeated five times without any perturbance of the constant stimulus flow. We found significant delta entrainment by these patterns in the A1, medial geniculate body, and medial pulvinar. In A1 and pulvinar, we observed a statistically significant, pattern structure-aligned modulation of neuronal firing that occurred earliest in the pulvinar, supporting the idea that grouping and detecting complex auditory patterns is a top-down, context-driven process. Besides electrophysiological measures, a pattern-related modulation of pupil diameter verified that, like humans, nonhuman primates consciously detect complex repetitive patterns that lack physical boundaries.
Collapse
|
14
|
Sound Frequency Representation in the Auditory Cortex of the Common Marmoset Visualized Using Optical Intrinsic Signal Imaging. eNeuro 2018; 5:eN-NWR-0078-18. [PMID: 29736410 PMCID: PMC5937112 DOI: 10.1523/eneuro.0078-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
Abstract
Natural sound is composed of various frequencies. Although the core region of the primate auditory cortex has functionally defined sound frequency preference maps, how the map is organized in the auditory areas of the belt and parabelt regions is not well known. In this study, we investigated the functional organizations of the core, belt, and parabelt regions encompassed by the lateral sulcus and the superior temporal sulcus in the common marmoset (Callithrix jacchus). Using optical intrinsic signal imaging, we obtained evoked responses to band-pass noise stimuli in a range of sound frequencies (0.5-16 kHz) in anesthetized adult animals and visualized the preferred sound frequency map on the cortical surface. We characterized the functionally defined organization using histologically defined brain areas in the same animals. We found tonotopic representation of a set of sound frequencies (low to high) within the primary (A1), rostral (R), and rostrotemporal (RT) areas of the core region. In the belt region, the tonotopic representation existed only in the mediolateral (ML) area. This representation was symmetric with that found in A1 along the border between areas A1 and ML. The functional structure was not very clear in the anterolateral (AL) area. Low frequencies were mainly preferred in the rostrotemplatal (RTL) area, while high frequencies were preferred in the caudolateral (CL) area. There was a portion of the parabelt region that strongly responded to higher sound frequencies (>5.8 kHz) along the border between the rostral parabelt (RPB) and caudal parabelt (CPB) regions.
Collapse
|
15
|
Toarmino CR, Yen CCC, Papoti D, Bock NA, Leopold DA, Miller CT, Silva AC. Functional magnetic resonance imaging of auditory cortical fields in awake marmosets. Neuroimage 2017; 162:86-92. [PMID: 28830766 DOI: 10.1016/j.neuroimage.2017.08.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 11/25/2022] Open
Abstract
The primate auditory cortex is organized into a network of anatomically and functionally distinct processing fields. Because of its tonotopic properties, the auditory core has been the main target of neurophysiological studies ranging from sensory encoding to perceptual decision-making. By comparison, the auditory belt has been less extensively studied, in part due to the fact that neurons in the belt areas prefer more complex stimuli and integrate over a wider frequency range than neurons in the core, which prefer pure tones of a single frequency. Complementary approaches, such as functional magnetic resonance imaging (fMRI), allow the anatomical identification of both the auditory core and belt and facilitate their functional characterization by rapidly testing a range of stimuli across multiple brain areas simultaneously that can be used to guide subsequent neural recordings. Bridging these technologies in primates will serve to further expand our understanding of primate audition. Here, we developed a novel preparation to test whether different areas of the auditory cortex could be identified using fMRI in common marmosets (Callithrix jacchus), a powerful model of the primate auditory system. We used two types of stimulation, band pass noise and pure tones, to parse apart the auditory core from surrounding secondary belt fields. In contrast to most auditory fMRI experiments in primates, we employed a continuous sampling paradigm to rapidly collect data with little deleterious effects. Here we found robust bilateral auditory cortex activation in two marmosets and unilateral activation in a third utilizing this preparation. Furthermore, we confirmed results previously reported in electrophysiology experiments, such as the tonotopic organization of the auditory core and regions activating preferentially to complex over simple stimuli. Overall, these data establish a key preparation for future research to investigate various functional properties of marmoset auditory cortex.
Collapse
Affiliation(s)
- Camille R Toarmino
- Cortical Systems and Behavior Laboratory, Department of Psychology and Neurosciences Graduate Program, The University of California at San Diego, La Jolla, CA, 92093-0109, USA
| | - Cecil C C Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892-4478, USA
| | - Daniel Papoti
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892-4478, USA
| | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, 20892-4400, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, Department of Psychology and Neurosciences Graduate Program, The University of California at San Diego, La Jolla, CA, 92093-0109, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892-4478, USA.
| |
Collapse
|
16
|
Scott BH, Saleem KS, Kikuchi Y, Fukushima M, Mishkin M, Saunders RC. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey. J Comp Neurol 2017; 525:3488-3513. [PMID: 28685822 DOI: 10.1002/cne.24283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/06/2023]
Abstract
In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Kadharbatcha S Saleem
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Yukiko Kikuchi
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Makoto Fukushima
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| |
Collapse
|
17
|
Leaver AM, Turesky TK, Seydell-Greenwald A, Morgan S, Kim HJ, Rauschecker JP. Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapp 2016; 37:2717-35. [PMID: 27091485 PMCID: PMC4945432 DOI: 10.1002/hbm.23204] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 02/29/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022] Open
Abstract
Tinnitus is an increasingly common disorder in which patients experience phantom auditory sensations, usually ringing or buzzing in the ear. Tinnitus pathophysiology has been repeatedly shown to involve both auditory and non-auditory brain structures, making network-level studies of tinnitus critical. In this magnetic resonance imaging (MRI) study, two resting-state functional connectivity (RSFC) approaches were used to better understand functional network disturbances in tinnitus. First, we demonstrated tinnitus-related reductions in RSFC between specific brain regions and resting-state networks (RSNs), defined by independent components analysis (ICA) and chosen for their overlap with structures known to be affected in tinnitus. Then, we restricted ICA to data from tinnitus patients, and identified one RSN not apparent in control data. This tinnitus RSN included auditory-sensory regions like inferior colliculus and medial Heschl's gyrus, as well as classically non-auditory regions like the mediodorsal nucleus of the thalamus, striatum, lateral prefrontal, and orbitofrontal cortex. Notably, patients' reported tinnitus loudness was positively correlated with RSFC between the mediodorsal nucleus and the tinnitus RSN, indicating that this network may underlie the auditory-sensory experience of tinnitus. These data support the idea that tinnitus involves network dysfunction, and further stress the importance of communication between auditory-sensory and fronto-striatal circuits in tinnitus pathophysiology. Hum Brain Mapp 37:2717-2735, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia.,Department of Neurology, University of California Los Angeles, Los Angeles, California
| | - Ted K Turesky
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia
| | - Anna Seydell-Greenwald
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia
| | - Susan Morgan
- Division of Audiology, Medstar Georgetown University Hospital, Washington, District of Columbia
| | - Hung J Kim
- Department of Otolaryngology, Medstar Georgetown University Hospital, Washington, District of Columbia
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia.,Institute for Advanced Study, TU Munich, Germany
| |
Collapse
|
18
|
High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci Rep 2015; 5:10950. [PMID: 26091254 PMCID: PMC4473644 DOI: 10.1038/srep10950] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/29/2015] [Indexed: 11/17/2022] Open
Abstract
Vocalizations are behaviorally critical sounds, and this behavioral importance is reflected in the ascending auditory system, where conspecific vocalizations are increasingly over-represented at higher processing stages. Recent evidence suggests that, in macaques, this increasing selectivity for vocalizations might culminate in a cortical region that is densely populated by vocalization-preferring neurons. Such a region might be a critical node in the representation of vocal communication sounds, underlying the recognition of vocalization type, caller and social context. These results raise the questions of whether cortical specializations for vocalization processing exist in other species, their cortical location, and their relationship to the auditory processing hierarchy. To explore cortical specializations for vocalizations in another species, we performed high-field fMRI of the auditory cortex of a vocal New World primate, the common marmoset (Callithrix jacchus). Using a sparse imaging paradigm, we discovered a caudal-rostral gradient for the processing of conspecific vocalizations in marmoset auditory cortex, with regions of the anterior temporal lobe close to the temporal pole exhibiting the highest preference for vocalizations. These results demonstrate similar cortical specializations for vocalization processing in macaques and marmosets, suggesting that cortical specializations for vocal processing might have evolved before the lineages of these species diverged.
Collapse
|
19
|
Tsukano H, Horie M, Bo T, Uchimura A, Hishida R, Kudoh M, Takahashi K, Takebayashi H, Shibuki K. Delineation of a frequency-organized region isolated from the mouse primary auditory cortex. J Neurophysiol 2015; 113:2900-20. [PMID: 25695649 PMCID: PMC4416634 DOI: 10.1152/jn.00932.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/17/2015] [Indexed: 01/30/2023] Open
Abstract
The primary auditory cortex (AI) is the representative recipient of information from the ears in the mammalian cortex. However, the delineation of the AI is still controversial in a mouse. Recently, it was reported, using optical imaging, that two distinct areas of the AI, located ventrally and dorsally, are activated by high-frequency tones, whereas only one area is activated by low-frequency tones. Here, we show that the dorsal high-frequency area is an independent region that is separated from the rest of the AI. We could visualize the two distinct high-frequency areas using flavoprotein fluorescence imaging, as reported previously. SMI-32 immunolabeling revealed that the dorsal region had a different cytoarchitectural pattern from the rest of the AI. Specifically, the ratio of SMI-32-positive pyramidal neurons to nonpyramidal neurons was larger in the dorsal high-frequency area than the rest of the AI. We named this new region the dorsomedial field (DM). Retrograde tracing showed that neurons projecting to the DM were localized in the rostral part of the ventral division of the medial geniculate body with a distinct frequency organization, where few neurons projected to the AI. Furthermore, the responses of the DM to ultrasonic courtship songs presented by males were significantly greater in females than in males; in contrast, there was no sex difference in response to artificial pure tones. Our findings offer a basic outline on the processing of ultrasonic vocal information on the basis of the precisely subdivided, multiple frequency-organized auditory cortex map in mice.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan;
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Bo
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Arikuni Uchimura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaharu Kudoh
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Abstract
The auditory cortex is a network of areas in the part of the brain that receives inputs from the subcortical auditory pathways in the brainstem and thalamus. Through an elaborate network of intrinsic and extrinsic connections, the auditory cortex is thought to bring about the conscious perception of sound and provide a basis for the comprehension and production of meaningful utterances. In this chapter, the organization of auditory cortex is described with an emphasis on its anatomic features and the flow of information within the network. These features are then used to introduce key neurophysiologic concepts that are being intensively studied in humans and animal models. The discussion is presented in the context of our working model of the primate auditory cortex and extensions to humans. The material is presented in the context of six underlying principles, which reflect distinct, but related, aspects of anatomic and physiologic organization: (1) the division of auditory cortex into regions; (2) the subdivision of regions into areas; (3) tonotopic organization of areas; (4) thalamocortical connections; (5) serial and parallel organization of connections; and (6) topographic relationships between auditory and auditory-related areas. Although the functional roles of the various components of this network remain poorly defined, a more complete understanding is emerging from ongoing studies that link auditory behavior to its anatomic and physiologic substrates.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine and Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
21
|
Cha K, Zatorre RJ, Schönwiesner M. Frequency Selectivity of Voxel-by-Voxel Functional Connectivity in Human Auditory Cortex. Cereb Cortex 2014; 26:211-24. [PMID: 25183885 DOI: 10.1093/cercor/bhu193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While functional connectivity in the human cortex has been increasingly studied, its relationship to cortical representation of sensory features has not been documented as much. We used functional magnetic resonance imaging to demonstrate that voxel-by-voxel intrinsic functional connectivity (FC) is selective to frequency preference of voxels in the human auditory cortex. Thus, FC was significantly higher for voxels with similar frequency tuning than for voxels with dissimilar tuning functions. Frequency-selective FC, measured via the correlation of residual hemodynamic activity, was not explained by generic FC that is dependent on spatial distance over the cortex. This pattern remained even when FC was computed using residual activity taken from resting epochs. Further analysis showed that voxels in the core fields in the right hemisphere have a higher frequency selectivity in within-area FC than their counterpart in the left hemisphere, or than in the noncore-fields in the same hemisphere. Frequency-selective FC is consistent with previous findings of topographically organized FC in the human visual and motor cortices. The high degree of frequency selectivity in the right core area is in line with findings and theoretical proposals regarding the asymmetry of human auditory cortex for spectral processing.
Collapse
Affiliation(s)
- Kuwook Cha
- Cognitive Neuroscience Unit, Montréal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montréal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| | - Marc Schönwiesner
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada H2V 2S9 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| |
Collapse
|
22
|
Antunes FM, Malmierca MS. An Overview of Stimulus-Specific Adaptation in the Auditory Thalamus. Brain Topogr 2013; 27:480-99. [DOI: 10.1007/s10548-013-0342-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/05/2013] [Indexed: 12/30/2022]
|
23
|
Bartlett EL. The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. BRAIN AND LANGUAGE 2013; 126:29-48. [PMID: 23725661 PMCID: PMC3707394 DOI: 10.1016/j.bandl.2013.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 05/17/2023]
Abstract
The auditory thalamus, or medial geniculate body (MGB), is the primary sensory input to auditory cortex. Therefore, it plays a critical role in the complex auditory processing necessary for robust speech perception. This review will describe the functional organization of the thalamus as it relates to processing acoustic features important for speech perception, focusing on thalamic nuclei that relate to auditory representations of language sounds. The MGB can be divided into three main subdivisions, the ventral, dorsal, and medial subdivisions, each with different connectivity, auditory response properties, neuronal properties, and synaptic properties. Together, the MGB subdivisions actively and dynamically shape complex auditory processing and form ongoing communication loops with auditory cortex and subcortical structures.
Collapse
|
24
|
Neural pathways conveying novisual information to the visual cortex. Neural Plast 2013; 2013:864920. [PMID: 23840972 PMCID: PMC3690246 DOI: 10.1155/2013/864920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed.
Collapse
|
25
|
Liu JV, Hirano Y, Nascimento GC, Stefanovic B, Leopold DA, Silva AC. fMRI in the awake marmoset: somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. Neuroimage 2013; 78:186-95. [PMID: 23571417 DOI: 10.1016/j.neuroimage.2013.03.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 01/20/2023] Open
Abstract
Functional neuroimaging in animal models is essential for understanding the principles of neurovascular coupling and the physiological basis of fMRI signals that are widely used to study sensory and cognitive processing in the human brain. While hemodynamic responses to sensory stimuli have been characterized in humans, animal studies are able to combine very high resolution imaging with invasive measurements and pharmacological manipulation. To date, most high-resolution studies of neurovascular coupling in small animals have been carried out in anesthetized rodents. Here we report fMRI experiments in conscious, awake common marmosets (Callithrix jacchus), and compare responses to animals anesthetized with propofol. In conscious marmosets, robust BOLD fMRI responses to somatosensory stimulation of the forearm were found in contralateral and ipsilateral regions of the thalamus, primary (SI) and secondary (SII) somatosensory cortex, and the caudate nucleus. These responses were markedly stronger than those in anesthetized marmosets and showed a monotonic increase in the amplitude of the BOLD response with stimulus frequency. On the other hand, anesthesia significantly attenuated responses in thalamus, SI and SII, and abolished responses in caudate and ipsilateral SI. Moreover, anesthesia influenced several other aspects of the fMRI responses, including the shape of the hemodynamic response function and the interareal (SI-SII) spontaneous functional connectivity. Together, these findings demonstrate the value of the conscious, awake marmoset model for studying physiological responses in the somatosensory pathway, in the absence of anesthesia, so that the data can be compared most directly to fMRI in conscious humans.
Collapse
Affiliation(s)
- Junjie V Liu
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room B1D106, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Bonath B, Tyll S, Budinger E, Krauel K, Hopf JM, Noesselt T. Task-demands and audio-visual stimulus configurations modulate neural activity in the human thalamus. Neuroimage 2013; 66:110-8. [DOI: 10.1016/j.neuroimage.2012.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022] Open
|
27
|
Nourski KV, Brugge JF, Reale RA, Kovach CK, Oya H, Kawasaki H, Jenison RL, Howard MA. Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study. J Neurophysiol 2012; 109:1283-95. [PMID: 23236002 DOI: 10.1152/jn.00718.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence regarding the functional subdivisions of human auditory cortex has been slow to converge on a definite model. In part, this reflects inadequacies of current understanding of how the cortex represents temporal information in acoustic signals. To address this, we investigated spatiotemporal properties of auditory responses in human posterolateral superior temporal (PLST) gyrus to acoustic click-train stimuli using intracranial recordings from neurosurgical patients. Subjects were patients undergoing chronic invasive monitoring for refractory epilepsy. The subjects listened passively to acoustic click-train stimuli of varying durations (160 or 1,000 ms) and rates (4-200 Hz), delivered diotically via insert earphones. Multicontact subdural grids placed over the perisylvian cortex recorded intracranial electrocorticographic responses from PLST and surrounding areas. Analyses focused on averaged evoked potentials (AEPs) and high gamma (70-150 Hz) event-related band power (ERBP). Responses to click trains featured prominent AEP waveforms and increases in ERBP. The magnitude of AEPs and ERBP typically increased with click rate. Superimposed on the AEPs were frequency-following responses (FFRs), most prominent at 50-Hz click rates but still detectable at stimulus rates up to 200 Hz. Loci with the largest high gamma responses on PLST were often different from those sites that exhibited the strongest FFRs. The data indicate that responses of non-core auditory cortex of PLST represent temporal stimulus features in multiple ways. These include an isomorphic representation of periodicity (as measured by the FFR), a representation based on increases in non-phase-locked activity (as measured by high gamma ERBP), and spatially distributed patterns of activity.
Collapse
Affiliation(s)
- Kirill V Nourski
- Dept. of Neurosurgery, The Univ. of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|