1
|
Singampalli KL, Jui E, Shani K, Ning Y, Connell JP, Birla RK, Bollyky PL, Caldarone CA, Keswani SG, Grande-Allen KJ. Congenital Heart Disease: An Immunological Perspective. Front Cardiovasc Med 2021; 8:701375. [PMID: 34434978 PMCID: PMC8380780 DOI: 10.3389/fcvm.2021.701375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
Congenital heart disease (CHD) poses a significant global health and economic burden-despite advances in treating CHD reducing the mortality risk, globally CHD accounts for approximately 300,000 deaths yearly. Children with CHD experience both acute and chronic cardiac complications, and though treatment options have improved, some remain extremely invasive. A challenge in addressing these morbidity and mortality risks is that little is known regarding the cause of many CHDs and current evidence suggests a multifactorial etiology. Some studies implicate an immune contribution to CHD development; however, the role of the immune system is not well-understood. Defining the role of the immune and inflammatory responses in CHD therefore holds promise in elucidating mechanisms underlying these disorders and improving upon current diagnostic and treatment options. In this review, we address the current knowledge coinciding CHDs with immune and inflammatory associations, emphasizing conditions where this understanding would provide clinical benefit, and challenges in studying these mechanisms.
Collapse
Affiliation(s)
- Kavya L. Singampalli
- Department of Bioengineering, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Elysa Jui
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Kevin Shani
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Yao Ning
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | | | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Departments of Surgery and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Christopher A. Caldarone
- Division of Congenital Heart Surgery, Departments of Surgery and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | | |
Collapse
|
2
|
Alser M, Shurbaji S, Yalcin HC. Mechanosensitive Pathways in Heart Development: Findings from Chick Embryo Studies. J Cardiovasc Dev Dis 2021; 8:jcdd8040032. [PMID: 33810288 PMCID: PMC8065436 DOI: 10.3390/jcdd8040032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first organ that starts to function in a developing embryo. It continues to undergo dramatic morphological changes while pumping blood to the rest of the body. Genetic regulation of heart development is partly governed by hemodynamics. Chick embryo is a major animal model that has been used extensively in cardiogenesis research. To reveal mechanosensitive pathways, a variety of surgical interferences and chemical treatments can be applied to the chick embryo to manipulate the blood flow. Such manipulations alter expressions of mechanosensitive genes which may anticipate induction of morphological changes in the developing heart. This paper aims to present different approaches for generating clinically relevant disturbed hemodynamics conditions using this embryonic chick model and to summarize identified mechanosensitive genes using the model, providing insights into embryonic origins of congenital heart defects.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
- Correspondence: ; Tel.: +974-4403-7719
| |
Collapse
|
3
|
Wang L, Lai G, Chu G, Liang X, Zhao Y. cMyBP-C was decreased via KLHL3-mediated proteasomal degradation in congenital heart diseases. Exp Cell Res 2017; 355:18-25. [DOI: 10.1016/j.yexcr.2017.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 02/04/2023]
|
4
|
Srejovic I, Jakovljevic V, Zivkovic V, Barudzic N, Radovanovic A, Stanojlovic O, Djuric DM. The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart. Mol Cell Biochem 2014; 401:97-105. [PMID: 25467376 DOI: 10.1007/s11010-014-2296-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022]
Abstract
In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180-200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H₂O₂), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO(2)(-), O(2)(-) and H₂O₂, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.
Collapse
Affiliation(s)
- Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | | | | | | | | | | |
Collapse
|