1
|
Veerareddy A, Fang H, Safari N, Xu P, Krueger F. Social network size, empathy, and white matter: A diffusion tensor imaging (DTI) study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:471-487. [PMID: 39354289 DOI: 10.3758/s13415-024-01225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
Social networks are fundamental for social interactions, with the social brain hypothesis positing that the size of the neocortex evolved to meet social demands. However, the role of fractional anisotropy (FA) in white matter (WM) tracts relevant to mentalizing, empathy, and social networks remains unclear. In this study, we investigated the relationships between FA in brain regions associated with social cognition (superior longitudinal fasciculus (SLF), cingulum (CING), uncinate fasciculus, inferior fronto-occipital fasciculus), social network characteristics (diversity, size, complexity), and empathy (cognitive, affective). We employed diffusion tensor imaging, tract-based spatial statistics, and mediation analyses to examine these associations. Our findings revealed that increased social network size was positively correlated with FA in the left SLF. Further, our mediation analysis showed that lower FA in left CING was associated with increased social network size, mediated by cognitive empathy. In summary, our findings suggest that WM tracts involved in social cognition play distinct roles in social network size and empathy, potentially implicating affective brain regions. In conclusion, our findings offer new perspectives on the cognitive mechanisms involved in understanding others' mental states and experiencing empathy within supportive social networks, with potential implications for understanding individual differences in social behavior and mental health.
Collapse
Affiliation(s)
| | - Huihua Fang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Nooshin Safari
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Pengfei Xu
- Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China.
- Great Bay Neuroscience and Technology Research Institute (Hong Kong), Hong Kong, Kwun Tong, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA
- Department of Psychology, University of Mannheim, Mannheim, Germany
| |
Collapse
|
2
|
Pace T, Levenstein JM, Anijärv TE, Campbell AJ, Treacy C, Hermens DF, Andrews SC. Modifiable dementia risk associated with smaller white matter volume and altered 1/f aperiodic brain activity: cross-sectional insights from the LEISURE study. Age Ageing 2024; 53:afae243. [PMID: 39523601 PMCID: PMC11551051 DOI: 10.1093/ageing/afae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The rising prevalence of dementia necessitates identifying early neurobiological markers of dementia risk. Reduced cerebral white matter volume and flattening of the slope of the electrophysiological 1/f spectral power distribution provide neurobiological markers of brain ageing alongside cognitive decline. However, their association with modifiable dementia risk remains to be understood. METHODS A cross-sectional sample of 98 healthy older adults (79 females, mean age = 65.44) underwent structural magnetic resonance imaging (sMRI), resting-state electroencephalography (EEG), cognitive assessments and dementia risk scoring using the CogDrisk framework. Univariate and multivariate linear regression models were conducted to investigate the relationships between modifiable dementia risk and sMRI brain volumes, the exponent of EEG 1/f spectral power, and cognition, whilst controlling for non-modifiable factors. RESULTS Smaller global white matter volume (F(1,87) = 6.884, R2 = 0.073, P = .010), and not grey (F(1,87) = 0.540, R2 = 0.006, P = .468) or ventricle volume (F(1,87) = 0.087, R2 = 0.001, P = .769), was associated with higher modifiable dementia risk. A lower exponent, reflecting a flatter 1/f spectral power distribution, was associated with higher dementia risk at frontal (F(1,92) = 4.096, R2 = 0.043, P = .046) but not temporal regions. No significant associations were found between cognitive performance and dementia risk. In multivariate analyses, both white matter volume and the exponent of the 1/f spectral power distribution independently associated with dementia risk. CONCLUSIONS Structural and functional neurobiological markers of early brain ageing, but not cognitive function, are independently associated with modifiable dementia risk in healthy older adults.
Collapse
Affiliation(s)
- Thomas Pace
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya QLD 4575, Australia
| | - Jacob M Levenstein
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya QLD 4575, Australia
| | - Toomas E Anijärv
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya QLD 4575, Australia
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund 223 62, Sweden
| | - Alicia J Campbell
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya QLD 4575, Australia
- Department of Psychology, Lund Memory Lab, Box 117, SE-221 00 Lund, Sweden
| | - Ciara Treacy
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya QLD 4575, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya QLD 4575, Australia
| | - Sophie C Andrews
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya QLD 4575, Australia
| |
Collapse
|
3
|
Das A. Dyadic contagion in cognitive function: A nationally-representative longitudinal study of older U.S. couples. SOCIAL SCIENCE RESEARCH 2024; 120:103011. [PMID: 38763534 DOI: 10.1016/j.ssresearch.2024.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 05/21/2024]
Abstract
Later-life cognitive function is strongly influenced by one's environment. At this life stage, a partner's behaviors and attributes-including their own cognitive status-are a key environmental determinant. A recent "social allostasis" theory also yields specific predictions on patterns of mutual influence-or "contagion"-in cognitive function. Yet, no population representative studies have examined these coupled dynamics. Using recently developed fixed-effects cross-lagged panel modeling (FE-CLPM) methods and ten-year data from the Health and Retirement Study-nationally-representative of U.S. adults over 50-the current study filled this gap. Results supported dyadic cognitive contagion over the long- but not short-run. Short-term associations suggested intriguing "cognitive cycling" possibilities among both men and women that need further investigation. Overall, results supported a theoretical model of coupled "cognitive careers," and relational inducement of allostatic load. Especially among men, recurrent impulses also cumulatively induced substantial path-dependent cognitive improvements, supporting the added value of repeated over one-time interventions. Theoretical and substantive implications are discussed.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Sociology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Li ZA, Cai Y, Taylor RL, Eisenstein SA, Barch DM, Marek S, Hershey T. Associations between socioeconomic status and white matter microstructure in children: indirect effects via obesity and cognition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285150. [PMID: 36798149 PMCID: PMC9934783 DOI: 10.1101/2023.02.09.23285150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Importance Both neighborhood and household socioeconomic disadvantage relate to negative health outcomes and altered brain structure in children. It is unclear whether such findings extend to white matter development, and via what mechanisms socioeconomic status (SES) influences the brain. Objective To test independent associations between neighborhood and household SES indicators and white matter microstructure in children, and examine whether body mass index and cognitive function (a proxy of environmental cognitive/sensory stimulation) may plausibly mediate these associations. Design This cross-sectional study used baseline data from the Adolescent Brain Cognitive Development (ABCD) Study, an ongoing 10-year cohort study tracking child health. Setting School-based recruitment at 21 U.S. sites. Participants Children aged 9 to 11 years and their parents/caregivers completed baseline assessments between October 1 st , 2016 and October 31 st , 2018. Data analysis was conducted from July to December 2022. Exposures Neighborhood disadvantage was derived from area deprivation indices at primary residence. Household SES indicators were total income and the highest parental education attainment. Main Outcomes and Measures Thirty-one major white matter tracts were segmented from diffusion-weighted images. The Restriction Spectrum Imaging (RSI) model was implemented to measure restricted normalized directional (RND; reflecting oriented myelin organization) and isotropic (RNI; reflecting glial/neuronal cell bodies) diffusion in each tract. Obesity-related measures were body mass index (BMI), BMI z -scores, and waist circumference, and cognitive performance was assessed using the NIH Toolbox Cognition Battery. Linear mixed-effects models tested the associations between SES indicators and scanner-harmonized RSI metrics. Structural equation models examined indirect effects of obesity and cognitive performance in the significant associations between SES and white mater microstructure summary principal components. Analyses were adjusted for age, sex, pubertal development stage, intracranial volume, and head motion. Results The analytical sample included 8842 children (4299 [48.6%] girls; mean age [SD], 9.9 [0.7] years). Greater neighborhood disadvantage and lower parental education were independently associated with lower RSI-RND in forceps major and corticospinal/pyramidal tracts, and had overlapping associations in the superior longitudinal fasciculus. Lower cognition scores and greater obesity-related measures partially accounted for these SES associations with RSI-RND. Lower household income was related to higher RSI-RNI in almost every tract, and greater neighborhood disadvantage had similar effects in primarily frontolimbic tracts. Lower parental education was uniquely linked to higher RSI-RNI in forceps major. Greater obesity-related measures partially accounted for these SES associations with RSI-RNI. Findings were robust in sensitivity analyses and mostly corroborated using traditional diffusion tensor imaging (DTI). Conclusions and Relevance These cross-sectional results demonstrate that both neighborhood and household contexts are relevant to white matter development in children, and suggest cognitive performance and obesity as possible pathways of influence. Interventions targeting obesity reduction and improving cognition from multiple socioeconomic angles may ameliorate brain health in low-SES children. Key Points Question: Are neighborhood and household socioeconomic levels associated with children’s brain white matter microstructure, and if so, do obesity and cognitive performance (reflecting environmental stimulation) mediate the associations?Findings: In a cohort of 8842 children, higher neighborhood disadvantage, lower household income, and lower parental education had independent and overlapping associations with lower restricted directional diffusion and greater restricted isotropic diffusion in white matter. Greater body mass index and poorer cognitive performance partially mediated these associations.Meaning: Both neighborhood and household poverty may contribute to altered white matter development in children. These effects may be partially explained by obesity incidence and poorer cognitive performance.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuqi Cai
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rita L. Taylor
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sarah A. Eisenstein
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Li Y, Wang Q, Wei HC, Liang YY, Niu FJ, Li KW, Zhou SJ, Zhou CZ. Fructus arctii: an overview on its traditional uses, pharmacology and phytochemistry. J Pharm Pharmacol 2021; 74:321-336. [PMID: 34612502 DOI: 10.1093/jpp/rgab140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Fructus arctii (F. arctii) is the dried ripe fruit of Arctium lappa Willd (Asteraceae). It is being used as a traditional medicine in China, Japan, Iran, Europe, Afghanistan, India, etc. for cough, inflammation, clearing the heat, detoxification, cancer and diabetes. This review summarized the botanical description, distribution, ethnopharmacology, bioactive constituents and pharmacological actions of F. arctii including methods to assess its quality. In addition, this review also provides insights into future research directions on F. arctii to further explore its bioactive constituents, mechanism involved in pharmacological activity, and clinical use including the development of new analytical methods for assessing the quality. KEY FINDINGS The comprehensive analysis of the literature revealed that F. arctii contains lignans, volatile oil, flavonoids, sesquiterpenoids, triterpenes, phenolic acids, etc. Experimental studies on various extracts and drug formulations showed that it has antioxidant, antimicrobial, hypoglycaemic, lipid-lowering, anti-inflammatory, analgesic, antiviral, anti-tumour activity, etc. SUMMARY The pharmacological activity of a few major constituents in F. arctii have been identified. However, there are still need more studies and more new technologies to prove the pharmacological activity and the effective mechanism of the other constituents that undergoing uncertain. Except for the animal experiments, clinical studies should be carried out to provide the evidence for clinical application.
Collapse
Affiliation(s)
- Ying Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao-Cheng Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Yu Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng-Jv Niu
- Institute of Acupuncture, Shandong Institute of Traditional Chinese Medicine, Jinan, China
| | - Kun-Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sheng-Jun Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chang-Zheng Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Gresita A, Mihai R, Hermann DM, Amandei FS, Capitanescu B, Popa-Wagner A. Effect of environmental enrichment and isolation on behavioral and histological indices following focal ischemia in old rats. GeroScience 2021; 44:211-228. [PMID: 34382128 PMCID: PMC8811116 DOI: 10.1007/s11357-021-00432-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/04/2021] [Indexed: 01/27/2024] Open
Abstract
Stroke is a disease of aging. In stroke patients, the enriched group that received stimulating physical, eating, socializing, and group activities resulted in higher activity levels including spending more time on upper limb, communal socializing, listening and iPad activities. While environmental enrichment has been shown to improve the behavioral outcome of stroke in young animals, the effect of an enriched environment on behavioral recuperation and histological markers of cellular proliferation, neuroinflammation, and neurogenesis in old subjects is not known. We used behavioral testing and immunohistochemistry to assess the effect of environment on post-stroke recovery of young and aged rats kept either in isolation or stimulating social, motor, and sensory environment (( +)Env). We provide evidence that post-stroke animals environmental enrichment ( +)Env had a significant positive effect on recovery on the rotating pole, the inclined plane, and the labyrinth test. Old age exerted a small but significant effect on lesion size, which was independent of the environment. Further, a smaller infarct volume positively correlated with better recovery of spatial learning based on positive reinforcement, working and reference memory of young, and to a lesser extent, old animals kept in ( +)Env. Histologically, isolation/impoverishment was associated with an increased number of proliferating inflammatory cells expressing ED1 cells in the peri-infarcted area of old but not young rats. Further, ( +)Env and young age were associated with an increased number of neuroepithelial cells expressing nestin/BrdU as well as beta III tubulin cells in the damaged brain area which correlated with an increased performance on the inclined plane and rotating pole. Finally, ( +)Env and an increased number of neurons expressing doublecortin/BrdU cells exerted a significant effect on performance for working memory and performance on the rotating pole in both age groups. A stimulating social, motor and sensory environment had a limited beneficial effect on behavioral recovery (working memory and rotating pole) after stroke in old rats by reducing neuroinflammation and increasing the number of neuronal precursors expressing doublecortin. Old age however, exerted a small but significant effect on lesion size, which was independent of the environment.
Collapse
Affiliation(s)
- Andrei Gresita
- Doctoral School, University of Medicine and Pharmacy, Craiova, Romania
| | - Ruscu Mihai
- Doctoral School, University of Medicine and Pharmacy, Craiova, Romania
| | - Dirk M Hermann
- Department of Neurology Chair of Vascular Neurology and Dementia, University of Medicine Essen, Essen, Germany
| | | | | | - Aurel Popa-Wagner
- Department of Neurology Chair of Vascular Neurology and Dementia, University of Medicine Essen, Essen, Germany. .,Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Southport, QLD, 4222, Australia. .,Doctoral School, University of Medicine and Pharmacy, Craiova, Romania.
| |
Collapse
|
7
|
Henriques D, Moreira R, Schwamborn J, Pereira de Almeida L, Mendonça LS. Successes and Hurdles in Stem Cells Application and Production for Brain Transplantation. Front Neurosci 2019; 13:1194. [PMID: 31802998 PMCID: PMC6877657 DOI: 10.3389/fnins.2019.01194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Brain regenerative strategies through the transplantation of stem cells hold the potential to promote functional rescue of brain lesions caused either by trauma or neurodegenerative diseases. Most of the positive modulations fostered by stem cells are fueled by bystander effects, namely increase of neurotrophic factors levels and reduction of neuroinflammation. Nevertheless, the ultimate goal of cell therapies is to promote cell replacement. Therefore, the ability of stem cells to migrate and differentiate into neurons that later become integrated into the host neuronal network replacing the lost neurons has also been largely explored. However, as most of the preclinical studies demonstrate, there is a small functional integration of graft-derived neurons into host neuronal circuits. Thus, it is mandatory to better study the whole brain cell therapy approach in order to understand what should be better comprehended concerning graft-derived neuronal and glial cells migration and integration before we can expect these therapies to be ready as a viable solution for brain disorder treatment. Therefore, this review discusses the positive mechanisms triggered by cell transplantation into the brain, the limitations of adult brain plasticity that might interfere with the neuroregeneration process, as well as some strategies tested to overcome some of these limitations. It also considers the efforts that have been made by the regulatory authorities to lead to better standardization of preclinical and clinical studies in this field in order to reduce the heterogeneity of the obtained results.
Collapse
Affiliation(s)
- Daniel Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jens Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Liliana S Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Griñán-Ferré C, Izquierdo V, Otero E, Puigoriol-Illamola D, Corpas R, Sanfeliu C, Ortuño-Sahagún D, Pallàs M. Environmental Enrichment Improves Cognitive Deficits, AD Hallmarks and Epigenetic Alterations Presented in 5xFAD Mouse Model. Front Cell Neurosci 2018; 12:224. [PMID: 30158856 PMCID: PMC6104164 DOI: 10.3389/fncel.2018.00224] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023] Open
Abstract
Cumulative evidence shows that modifications in lifestyle factors constitute an effective strategy to modulate molecular events related to neurodegenerative diseases, confirming the relevant role of epigenetics. Accordingly, Environmental Enrichment (EE) represents an approach to ameliorate cognitive decline and neuroprotection in Alzheimer’s disease (AD). AD is characterized by specific neuropathological hallmarks, such as β-amyloid plaques and Neurofibrillary Tangles, which severely affect the areas of the brain responsible for learning and memory. We evaluated EE neuroprotective influence on 5xFAD mice. We found a better cognitive performance on EE vs. Control (Ct) 5xFAD mice, until being similar to Wild-Type (Wt) mice group. Neurodegenerative markers as β-CTF and tau hyperphosphorylation, reduced protein levels whiles APPα, postsynaptic density 95 (PSD95) and synaptophysin (SYN) protein levels increased protein levels in the hippocampus of 5xFAD-EE mice group. Furthermore, a reduction in gene expression of Il-6, Gfap, Hmox1 and Aox1 was determined. However, no changes were found in the gene expression of neurotrophins, such as Brain-derived neurotrophic factor (Bdnf), Nerve growth factor (Ngf), Tumor growth factor (Tgf) and Nerve growth factor inducible (Vgf) in mice with EE. Specifically, we found a reduced DNA-methylation level (5-mC) and an increased hydroxymethylation level (5-hmC), as well as an increased histone H3 and H4 acetylation level. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme, such as Dnmt3a/b, Hdac1, and Tet2. Extensive molecular analysis revealed a correlation between neuronal function and changes in epigenetic marks after EE that explain the cognitive improvement in 5xFAD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Vanesa Izquierdo
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Eduard Otero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunomodulación Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de las Salud (CUCS), Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Abstract
Affect and emotion are defined as “an essential part of the process of an organism's interaction with stimuli.” Similar to affect, the immune response is the “tool” the body uses to interact with the external environment. Thanks to the emotional and immunological response, we learn to distinguish between what we like and what we do not like, to counteract a broad range of challenges, and to adjust to the environment we are living in. Recent compelling evidence has shown that the emotional and immunological systems share more than a similarity of functions. This review article will discuss the crosstalk between these two systems and the need for a new scientific area of research called affective immunology. Research in this field will allow a better understanding and appreciation of the immunological basis of mental disorders and the emotional side of immune diseases.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Salmin VV, Komleva YK, Kuvacheva NV, Morgun AV, Khilazheva ED, Lopatina OL, Pozhilenkova EA, Shapovalov KA, Uspenskaya YA, Salmina AB. Differential Roles of Environmental Enrichment in Alzheimer's Type of Neurodegeneration and Physiological Aging. Front Aging Neurosci 2017; 9:245. [PMID: 28798684 PMCID: PMC5526976 DOI: 10.3389/fnagi.2017.00245] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022] Open
Abstract
Impairment of hippocampal adult neurogenesis in aging or degenerating brain is a well-known phenomenon caused by the shortage of brain stem cell pool, alterations in the local microenvironment within the neurogenic niches, or deregulation of stem cell development. Environmental enrichment (EE) has been proposed as a potent tool to restore brain functions, to prevent aging-associated neurodegeneration, and to cure neuronal deficits seen in neurodevelopmental and neurodegenerative disorders. Here, we report our data on the effects of environmental enrichment on hippocampal neurogenesis in vivo and neurosphere-forming capacity of hippocampal stem/progenitor cells in vitro. Two models - Alzheimer's type of neurodegeneration and physiological brain aging - were chosen for the comparative analysis of EE effects. We found that environmental enrichment greatly affects the expression of markers specific for stem cells, progenitor cells and differentiated neurons (Pax6, Ngn2, NeuroD1, NeuN) in the hippocampus of young adult rats or rats with Alzheimer's disease (AD) model but less efficiently in aged animals. Application of time-lag mathematical model for the analysis of impedance traces obtained in real-time monitoring of cell proliferation in vitro revealed that EE could restore neurosphere-forming capacity of hippocampal stem/progenitor cells more efficiently in young adult animals (fourfold greater in the control group comparing to the AD model group) but not in the aged rats (no positive effect of environmental enrichment at all). In accordance with the results obtained in vivo, EE was almost ineffective in the recovery of hippocampal neurogenic reserve in vitro in aged, but not in amyloid-treated or young adult, rats. Therefore, EE-based neuroprotective strategies effective in Aβ-affected brain could not be directly extrapolated to aged brain.
Collapse
Affiliation(s)
- Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia V Kuvacheva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elena D Khilazheva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elena A Pozhilenkova
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Konstantin A Shapovalov
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Yulia A Uspenskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|
11
|
Keiner S, Niv F, Neumann S, Steinbach T, Schmeer C, Hornung K, Schlenker Y, Förster M, Witte OW, Redecker C. Effect of skilled reaching training and enriched environment on generation of oligodendrocytes in the adult sensorimotor cortex and corpus callosum. BMC Neurosci 2017; 18:31. [PMID: 28279169 PMCID: PMC5345235 DOI: 10.1186/s12868-017-0347-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background
Increased motor activity or social interactions through enriched environment are strong stimulators of grey and white matter plasticity in the adult rodent brain. In the present study we evaluated whether specific reaching training of the dominant forelimb (RT) and stimulation of unspecific motor activity through enriched environment (EE) influence the generation of distinct oligodendrocyte subpopulations in the sensorimotor cortex and corpus callosum of the adult rat brain. Animals were placed in three different housing conditions: one group was transferred to an EE, a second group received daily RT, whereas a third group remained in the standard cage. Bromodeoxyuridine (BrdU) was applied at days 2–6 after start of experiments and animals were allowed to survive for 10 and 42 days. Results Enriched environment and daily reaching training of the dominant forelimb significantly increased the number of newly differentiated GSTπ+ oligodendrocytes at day 10 and newly differentiated CNPase+ oligodendrocytes in the sensorimotor cortex at day 42. The myelin level as measured by CNPase expression was increased in the frontal cortex at day 42. Distribution of newly differentiated NG2+ subpopulations changed between 10 and 42 days with an increase of GSTπ+ subtypes and a decrease of NG2+ cells in the sensorimotor cortex and corpus callosum. Analysis of neuronal marker doublecortin (DCX) showed that more than half of NG2+ cells express DCX in the cortex. The number of new DCX+NG2+ cells was reduced by EE at day 10. Conclusions Our results indicate for the first time that specific and unspecific motor training conditions differentially alter the process of differentiation from oligodendrocyte subpopulations, in particular NG2+DCX+ cells, in the sensorimotor cortex and corpus callosum. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0347-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| | - Fanny Niv
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Susanne Neumann
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Tanja Steinbach
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Christian Schmeer
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Katrin Hornung
- Department of Cardiothoracic Surgery, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Yvonne Schlenker
- Pneumology, Internal Medicine I, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Martin Förster
- Pneumology, Internal Medicine I, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Christoph Redecker
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
12
|
Wang Y, Ji X, Leak RK, Chen F, Cao G. Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Res Rev 2017; 34:39-50. [PMID: 27876573 PMCID: PMC5250574 DOI: 10.1016/j.arr.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Aging, a complex process associated with various structural, functional and metabolic changes in the brain, is an important risk factor for neurodegenerative diseases and stroke. These diseases share similar neuropathological changes, such as the formation of misfolded proteins, oxidative stress, loss of neurons and synapses, dysfunction of the neurovascular unit (NVU), reduction of self-repair capacity, and motor and/or cognitive deficiencies. In addition to gray matter dysfunction, the plasticity and repair capacity of white matter also decrease with aging and contribute to neurodegenerative diseases. Aging not only renders patients more susceptible to these disorders, but also attenuates their self-repair capabilities. In addition, low drug responsiveness and intolerable side effects are major challenges in the prevention and treatment of senile diseases. Thus, stem cell therapies-characterized by cellular plasticity and the ability to self-renew-may be a promising strategy for aging-related brain disorders. Here, we review the common pathophysiological changes, treatments, and the promises and limitations of stem cell therapies in age-related neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Yuan Wang
- Departments of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Xunming Ji
- Departments of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
13
|
Gender-dependent effects of enriched environment and social isolation in ischemic retinal lesion in adult rats. Int J Mol Sci 2013; 14:16111-23. [PMID: 23921682 PMCID: PMC3759902 DOI: 10.3390/ijms140816111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/10/2013] [Accepted: 07/17/2013] [Indexed: 12/17/2022] Open
Abstract
Exposure to an enriched environment has been shown to have many positive effects on brain structure and function. Numerous studies have proven that enriched environment can reduce the lesion induced by toxic and traumatic injuries. Impoverished environment, on the other hand, can have deleterious effects on the outcome of neuronal injuries. We have previously shown that enriched conditions have protective effects in retinal injury in newborn rats. It is well-known that the efficacy of neuroprotective strategies can depend on age and gender. The aim of the present study, therefore, was to examine the effects of environmental enrichment and social isolation in retinal ischemia. We used bilateral common carotid artery occlusion to induce retinal hypoperfusion in adult Wistar rats of both genders. Groups were housed in standard, enriched or impoverished conditions. Impoverished environment was induced by social isolation. Retinas were processed for histological analysis after two weeks of survival. In the present study, we show that (1) enriched environment has protective effects in adult ischemic retinal lesion, while (2) impoverished environment further increases the degree of ischemic injury, and (3) that these environmental effects are gender-dependent: females are less responsive to the positive effects of environmental enrichment and more vulnerable to retinal ischemia in social isolation. In summary, our present study shows that the effects of both positive and negative environmental stimuli are gender-dependent in ischemic retinal lesions.
Collapse
|