1
|
Kwan GT, Andrade LR, Prime KJ, Tresguerres M. Immunohistochemical and ultrastructural characterization of the inner ear epithelial cells of splitnose rockfish ( Sebastes diploproa). Am J Physiol Regul Integr Comp Physiol 2024; 326:R277-R296. [PMID: 38189166 DOI: 10.1152/ajpregu.00223.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
The inner ear of teleost fish regulates the ionic and acid-base chemistry and secretes protein matrix into the endolymph to facilitate otolith biomineralization, which is used to maintain vestibular and auditory functions. The otolith is biomineralized in a concentric ring pattern corresponding to seasonal growth, and this calcium carbonate (CaCO3) polycrystal has become a vital aging and life-history tool for fishery managers, ecologists, and conservation biologists. Moreover, biomineralization patterns are sensitive to environmental variability including climate change, thereby threatening the accuracy and relevance of otolith-reliant toolkits. However, the cellular biology of the inner ear is poorly characterized, which is a hurdle for a mechanistic understanding of the underlying processes. This study provides a systematic characterization of the cell types in the inner ear of splitnose rockfish (Sebastes diploproa). Scanning electron microscopy revealed the apical morphologies of six inner ear cell types. In addition, immunostaining and confocal microscopy characterized the expression and subcellular localization of the proteins Na+-K+-ATPase, carbonic anhydrase, V-type H+-ATPase, Na+-K+-2Cl--cotransporter, otolith matrix protein 1, and otolin-1 in six inner ear cell types bordering the endolymph. This fundamental cytological characterization of the rockfish inner ear epithelium illustrates the intricate physiological processes involved in otolith biomineralization and highlights how greater mechanistic understanding is necessary to predict their multistressor responses to future climate change.
Collapse
Affiliation(s)
- Garfield T Kwan
- Wildlife, Fish and Conservation Biology, University of California Davis, Davis, California, United States
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States
| | - Kaelan J Prime
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
2
|
Jiang Q, Liang X, Ye T, Zhang Y, Lou B. Metabonomics and Transcriptomics Analyses Reveal the Development Process of the Auditory System in the Embryonic Development Period of the Small Yellow Croaker under Background Noise. Int J Mol Sci 2024; 25:1954. [PMID: 38396633 PMCID: PMC10888356 DOI: 10.3390/ijms25041954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Underwater noise pollution has become a potential threat to aquatic animals in the natural environment. The main causes of such pollution are frequent human activities creating underwater environmental noise, including commercial shipping, offshore energy platforms, scientific exploration activities, etc. However, in aquaculture environments, underwater noise pollution has also become an unavoidable problem due to background noise created by aquaculture equipment. Some research has shown that certain fish show adaptability to noise over a period of time. This could be due to fish's special auditory organ, i.e., their "inner ear"; meanwhile, otoliths and sensory hair cells are the important components of the inner ear and are also essential for the function of the auditory system. Recently, research in respect of underwater noise pollution has mainly focused on adult fish, and there is a lack of the research on the effects of underwater noise pollution on the development process of the auditory system in the embryonic development period. Thus, in this study, we collected embryo-larval samples of the small yellow croaker (Larimichthys polyactis) in four important stages of otic vesicle development through artificial breeding. Then, we used metabonomics and transcriptomics analyses to reveal the development process of the auditory system in the embryonic development period under background noise (indoor and underwater environment sound). Finally, we identified 4026 differentially expressed genes (DEGs) and 672 differential metabolites (DMs), including 37 DEGs associated with the auditory system, and many differences mainly existed in the neurula stage (20 h of post-fertilization/20 HPF). We also inferred the regulatory mode and process of some important DEGs (Dnmt1, CPS1, and endothelin-1) in the early development of the auditory system. In conclusion, we suggest that the auditory system development of L. polyactis begins at least in the neurula stage or earlier; the other three stages (tail bud stage, caudal fin fold stage, and heart pulsation stage, 28-35 HPF) mark the rapid development period. We speculate that the effect of underwater noise pollution on the embryo-larval stage probably begins even earlier.
Collapse
Affiliation(s)
| | | | | | | | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Q.J.); (X.L.); (T.Y.); (Y.Z.)
| |
Collapse
|
3
|
Huang S, Qian S. Advances in otolith-related protein research. Front Neurosci 2022; 16:956200. [PMID: 35958995 PMCID: PMC9361852 DOI: 10.3389/fnins.2022.956200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Otoliths are biological crystals formed by a layer of calcium carbonate crystal that adhere to the ciliary surface of the utricular and saccular receptors in the vestibule of all vertebrates inner ear, enabling the utricle and saccule to better perceive the changes in linear and gravitational acceleration. However, the molecular etiology of otolith related diseases is still unclear. In this review, we have summarized the recent findings and provided an overview of the proteins that play important roles in otolith formation and maintenance (Otoconin-90, Otolin-1, Otolith Matrix Protein-1, Cochlin, Otogelin, α-Tectorin, β-Tectorin, Otopetrin-1, and Otopetrin-2, PMCA2, etc.), providing new insight for the prevention and management of benign paroxysmal positional vertigo (BPPV) with basis for otolith-related proteins as potential biomarkers of vestibular disease.
Collapse
Affiliation(s)
- Shouju Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shuxia Qian
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Shuxia Qian,
| |
Collapse
|
4
|
Ciliopathy genes are required for apical secretion of Cochlin, an otolith crystallization factor. Proc Natl Acad Sci U S A 2021; 118:2102562118. [PMID: 34244442 DOI: 10.1073/pnas.2102562118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report that important regulators of cilia formation and ciliary compartment-directed protein transport function in secretion polarity. Mutations in cilia genes cep290 and bbs2, involved in human ciliopathies, affect apical secretion of Cochlin, a major otolith component and a determinant of calcium carbonate crystallization form. We show that Cochlin, defective in human auditory and vestibular disorder, DFNA9, is secreted from small specialized regions of vestibular system epithelia. Cells of these regions secrete Cochlin both apically into the ear lumen and basally into the basal lamina. Basally secreted Cochlin diffuses along the basal surface of vestibular epithelia, while apically secreted Cochlin is incorporated into the otolith. Mutations in a subset of ciliopathy genes lead to defects in Cochlin apical secretion, causing abnormal otolith crystallization and behavioral defects. This study reveals a class of ciliary proteins that are important for the polarity of secretion and delineate a secretory pathway that regulates biomineralization.
Collapse
|
5
|
Oudot M, Neige P, Shir IB, Schmidt A, Strugnell JM, Plasseraud L, Broussard C, Hoffmann R, Lukeneder A, Marin F. The shell matrix and microstructure of the Ram’s Horn squid: Molecular and structural characterization. J Struct Biol 2020; 211:107507. [DOI: 10.1016/j.jsb.2020.107507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
|
6
|
Kalka M, Markiewicz N, Ptak M, Sone ED, Ożyhar A, Dobryszycki P, Wojtas M. In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization. FASEB J 2019; 33:6877-6886. [PMID: 30840836 DOI: 10.1096/fj.201802268r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Otoliths are one of the biominerals whose formation is highly controlled by proteins. The first protein discovered to be involved in otolith biomineralization in zebrafish was starmaker (Stm). Previously, Stm was shown to be responsible for the preferential formation of aragonite, a polymorph of calcium carbonate, in otoliths. In this work, proteomic analysis of adult zebrafish otoliths was performed. Stm is the only highly phosphorylated protein found in our studies. Besides previously studied otolith proteins, we discovered several dozens of unknown proteins that reveal the likely mechanism of biomineralization. A comparison of aragonite and vaterite otoliths showed similarities in protein composition. We observed the presence of Stm in both types of otoliths. In vitro studies of 2 characteristic Stm fragments indicated that the DS-rich region has a special biomineralization activity, especially after phosphorylation.-Kalka, M., Markiewicz, N., Ptak, M., Sone, E. D., Ożyhar, A., Dobryszycki, P., Wojtas, M. In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization.
Collapse
Affiliation(s)
- Marta Kalka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Natalia Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland; and
| | - Eli D Sone
- Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, and.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Piotr Dobryszycki
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, and.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Thomas ORB, Swearer SE, Kapp EA, Peng P, Tonkin‐Hill GQ, Papenfuss A, Roberts A, Bernard P, Roberts BR. The inner ear proteome of fish. FEBS J 2018; 286:66-81. [DOI: 10.1111/febs.14715] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023]
Affiliation(s)
| | - Stephen E. Swearer
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Eugene A. Kapp
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
- The Walter and Eliza Hall Institute of Medical Research Parkville Vic. Australia
| | - Po Peng
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Gerry Q. Tonkin‐Hill
- The Walter and Eliza Hall Institute of Medical Research Parkville Vic. Australia
| | - Anthony Papenfuss
- The Walter and Eliza Hall Institute of Medical Research Parkville Vic. Australia
| | - Anne Roberts
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
| | - Pascal Bernard
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
| |
Collapse
|
8
|
Coll-Lladó C, Giebichenstein J, Webb PB, Bridges CR, de la Serrana DG. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Sci Rep 2018; 8:8384. [PMID: 29849112 PMCID: PMC5976741 DOI: 10.1038/s41598-018-26026-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/03/2018] [Indexed: 11/29/2022] Open
Abstract
The effects of ocean acidification on otolith crystallization and growth rates were investigated in gilthead sea bream (Sparus aurata) larvae. Larvae were exposed to three different pH levels: pH8.2, pH7.7 and pH7.3 for a period of 18 days post-fertilization. For the first time, we demonstrate that pH has a significant impact on the carbonate polymorph composition, showing calcite in a significant percentage of individuals at low pH. Around 21% of the larvae exposed to pH7.3 showed irregular calcitic otoliths rather than commonly found round aragonitic otoliths. Calcitic otoliths showed a moderate level of heritability suggesting an important role of genetic factors. We also observed significantly larger otoliths in larvae reared at pH7.7 and pH7.3 compared to pH8.2 in both sagittae and lapilli. Our results demonstrate that otolith growth rates in gilthead sea bream larvae increase at low pH while a significant proportion of larvae are prone to the formation of calcitic otoliths at pH7.3.
Collapse
Affiliation(s)
- Clara Coll-Lladó
- Gatty Marine Laboratory, Scottish Oceans Institute, School of Biology, University of St Andrews, Scotland, UK
- Xelect Ltd, Horizon House, St Andrews, Scotland, UK
| | - Jan Giebichenstein
- Institut für Stoffwechselphysiologie/AG Ecophysiology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Paul B Webb
- School of Chemistry, University of St Andrews, Scotland, UK
| | - Christopher R Bridges
- Institut für Stoffwechselphysiologie/AG Ecophysiology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Daniel Garcia de la Serrana
- Gatty Marine Laboratory, Scottish Oceans Institute, School of Biology, University of St Andrews, Scotland, UK.
| |
Collapse
|
9
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
10
|
Weigele J, Franz-Odendaal TA, Hilbig R. Formation of the inner ear during embryonic and larval development of the cichlid fish (Oreochromis mossambicus). Connect Tissue Res 2017; 58:172-195. [PMID: 27268076 DOI: 10.1080/03008207.2016.1198337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The vertebrate inner ear comprises mineralized elements, namely the otoliths (fishes) or the otoconia (mammals). These elements serve vestibular and auditory functions. The formation of otoconia and otoliths is described as a stepwise process, and in fish, it is generally divided into an aggregation of the otolith primordia from precursor particles and then a growth process that continues throughout life. RESULTS This study was undertaken to investigate the complex transition between these two steps. Therefore, we investigated the developmental profiles of several inner ear structural and calcium-binding proteins during the complete embryonic and larval development of the cichlid fish Oreochromis mossambicus in parallel with the morphology of inner ear and especially otoliths. We show that the formation of otoliths is a highly regulated temporal and spatial process which takes place throughout embryonic and larval development. CONCLUSIONS Based on our data we defined eight phases of otolith differentiation from the primordia to the mature otolith.
Collapse
Affiliation(s)
- Jochen Weigele
- a Zoological Institute , University of Stuttgart-Hohenheim , Stuttgart , Germany.,b Department of Biology , Mount Saint Vincent University , Halifax , Nova Scotia , Canada
| | | | - Reinhard Hilbig
- a Zoological Institute , University of Stuttgart-Hohenheim , Stuttgart , Germany
| |
Collapse
|
11
|
Pracheil BM, Chakoumakos BC, Feygenson M, Whitledge GW, Koenigs RP, Bruch RM. Sturgeon and paddlefish (Acipenseridae) sagittal otoliths are composed of the calcium carbonate polymorphs vaterite and calcite. JOURNAL OF FISH BIOLOGY 2017; 90:549-558. [PMID: 27461067 DOI: 10.1111/jfb.13085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
This study sought to resolve whether sturgeon (Acipenseridae) sagittae (otoliths) contain a non-vaterite fraction and to quantify how large a non-vaterite fraction is using neutron diffraction analysis. This study found that all otoliths examined had a calcite fraction that ranged from 18 ± 6 to 36 ± 3% by mass. This calcite fraction is most probably due to biological variation during otolith formation rather than an artefact of polymorph transformation during preparation.
Collapse
Affiliation(s)
- B M Pracheil
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - B C Chakoumakos
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - M Feygenson
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - G W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL 62901, U.S.A
| | - R P Koenigs
- Wisconsin Department of Natural Resources, Oshkosh, WI 54903, U.S.A
| | - R M Bruch
- Wisconsin Department of Natural Resources, Oshkosh, WI 54903, U.S.A
| |
Collapse
|
12
|
Thomas ORB, Ganio K, Roberts BR, Swearer SE. Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics 2017; 9:239-249. [DOI: 10.1039/c6mt00189k] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|