1
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Erjavec I, Festa A, Hajdu T, Mateovics‐László O, Novak M, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Human talar ontogeny: Insights from morphological and trabecular changes during postnatal growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:211-228. [PMCID: PMC9804293 DOI: 10.1002/ajpa.24596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 08/11/2023]
Abstract
Objectives The study of the development of human bipedalism can provide a unique perspective on the evolution of morphology and behavior across species. To generate new knowledge of these mechanisms, we analyze changes in both internal and external morphology of the growing human talus in a sample of modern human juveniles using an innovative approach. Materials and Methods The sample consists of high‐resolution microCT scans of 70 modern juvenile tali, aged between 8 postnatal weeks and 10 years old, from a broad chronological range from Middle/Late Neolithic, that is, between 4800 and 4500 BCE, to the 20th century. We applied geometric morphometric and whole‐bone trabecular analysis (bone volume fraction, degree of anisotropy, trabecular number, thickness, and spacing) to all specimens to identify changes in the external and internal morphology during growth. Morphometric maps were also generated. Results During the first year of life, the talus has an immature and globular shape, with a dense, compact, and rather isotropic trabecular architecture, with numerous trabeculae packed closely together. This pattern changes while children acquire a more mature gait, and the talus tends to have a lower bone volume fraction, a higher anisotropy, and a more mature shape. Discussion The changes in talar internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from an “unspecialized” morphology to a more complex one, following the development of bipedal gait. Our research shows that talar plasticity, even though genetically driven, may show mechanical influences and contribute to tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)BarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Igor Erjavec
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Mario Novak
- Centre for Applied BioanthropologyInstitute for Anthropological ResearchZagrebCroatia
| | - Ildikó Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| |
Collapse
|
2
|
Young M, Richard D, Grabowski M, Auerbach BM, de Bakker BS, Hagoort J, Muthuirulan P, Kharkar V, Kurki HK, Betti L, Birkenstock L, Lewton KL, Capellini TD. The developmental impacts of natural selection on human pelvic morphology. SCIENCE ADVANCES 2022; 8:eabq4884. [PMID: 35977020 PMCID: PMC9385149 DOI: 10.1126/sciadv.abq4884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary responses to selection for bipedalism and childbirth have shaped the human pelvis, a structure that differs substantially from that in apes. Morphology related to these factors is present by birth, yet the developmental-genetic mechanisms governing pelvic shape remain largely unknown. Here, we pinpoint and characterize a key gestational window when human-specific pelvic morphology becomes recognizable, as the ilium and the entire pelvis acquire traits essential for human walking and birth. We next use functional genomics to molecularly characterize chondrocytes from different pelvic subelements during this window to reveal their developmental-genetic architectures. We then find notable evidence of ancient selection and genetic constraint on regulatory sequences involved in ilium expansion and growth, findings complemented by our phenotypic analyses showing that variation in iliac traits is reduced in humans compared to African apes. Our datasets provide important resources for musculoskeletal biology and begin to elucidate developmental mechanisms that shape human-specific morphology.
Collapse
Affiliation(s)
- Mariel Young
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Richard
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool L3 3AF, UK
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Benjamin M. Auerbach
- Department of Anthropology, The University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN, USA
| | - Bernadette S. de Bakker
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | | | - Vismaya Kharkar
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Helen K. Kurki
- Department of Anthropology, University of Victoria, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Lia Betti
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | | | - Kristi L. Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Terence D. Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
3
|
Lee DH, Jeon HJ. The effect of the use of smartphone while walking on the electromyography activity of the lower extremity in young students. J Exerc Rehabil 2021; 17:138-144. [PMID: 34012940 PMCID: PMC8103187 DOI: 10.12965/jer.2142166.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022] Open
Abstract
The study aims to determine the effects of smartphone use on the muscle activity of the lower extremity when walking. Twenty-three healthy young students were asked to perform a 10-m walk test between normal walking without using a smartphone and walking while two-handed texting on a smartphone. The electromyography activities of the lower extremity were quantified. To quantitatively assess the cervical flexion range of smartphone users, the cervical flexion angle was measured using a digital goniometer. The study results indicated that the use of a smartphone while walking could lessen muscle activity on the tibialis anterior, gastrocnemius, rectus femoris, gluteus maximus, and gluteus medius than that of normal walking without using a smartphone. The walking speeds were reduced in walking while using a smartphone compared with normal walking without using a smartphone. The cervical flexion angle was greater when walking while using a smartphone compared to that of normal walking without using a smartphone. These results suggest that frequently using a smartphone while walking could be a potential risk for musculoskeletal problems.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Physical Therapy, U1 University, Yeongdong, Korea
| | - Hye-Joo Jeon
- Department of Physical Therapy, U1 University, Yeongdong, Korea
| |
Collapse
|
4
|
Adegboyega MT, Stamos PA, Hublin JJ, Weaver TD. Virtual reconstruction of the Kebara 2 Neanderthal pelvis. J Hum Evol 2020; 151:102922. [PMID: 33360685 DOI: 10.1016/j.jhevol.2020.102922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022]
Abstract
The paucity of well-preserved pelvises in the hominin fossil record has hindered robust analyses of shifts in critical biological processes throughout human evolution. The Kebara 2 pelvis remains one of the best preserved hominin pelvises, providing a rare opportunity to assess Neanderthal pelvic morphology and function. Here, we present two new reconstructions of the Kebara 2 pelvis created from CT scans of the right hip bone and sacrum. For both reconstructions, we proceeded as follows. First, we virtually reconstructed the right hip bone and the sacrum by repositioning the fragments of the hip bone and sacrum. Then, we created a mirrored copy of the right hip bone to act as the left hip bone. Next, we 3D printed the three bones and physically articulated them. Finally, we used fiducial points collected from the physically articulated models to articulate the hip bones and sacrum in virtual space. Our objectives were to (1) reposition misaligned fragments, particularly the ischiopubic ramus; (2) create a 3D model of a complete pelvis; and (3) assess interobserver reconstruction variation. These new reconstructions show that, in comparison with previous measurements, Kebara 2 possessed a higher shape index (maximum anteroposterior length/maximum mediolateral width) for the pelvic inlet and perhaps the outlet and a more anteriorly positioned sacral promontory and pubic symphysis relative to the acetabula. The latter differences result in a lower ratio between the distances anterior and posterior to the anterior margins of the acetabula. Generally, the new reconstructions tend to accentuate features of the Kebara 2 pelvis--the long superior pubic ramus and anteriorly positioned pelvic inlet--that have already been discussed for Kebara 2 and other Neanderthals.
Collapse
Affiliation(s)
- Mayowa T Adegboyega
- Department of Anthropology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| | - Peter A Stamos
- Department of Anthropology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA; Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street / Anatomy 201, Chicago, IL, 60637, USA
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Timothy D Weaver
- Department of Anthropology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Lewton KL, Brankovic R, Byrd WA, Cruz D, Morales J, Shin S. The effects of phylogeny, body size, and locomotor behavior on the three-dimensional shape of the pelvis in extant carnivorans. PeerJ 2020; 8:e8574. [PMID: 32117630 PMCID: PMC7036272 DOI: 10.7717/peerj.8574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 01/17/2023] Open
Abstract
The mammalian pelvis is thought to exhibit adaptations to the functional demands of locomotor behaviors. Previous work in primates has identified form-function relationships between pelvic shape and locomotor behavior; few studies have documented such relationships in carnivorans, instead focusing on long bones. Most work on the functional morphology of the carnivoran pelvis, in particular, has used univariate measures, with only a few previous studies incorporating a three-dimensional (3D) analysis. Here we test the hypothesis that carnivoran taxa that are characterized by different locomotor modes also differ in 3D shape of the os coxae. Using 3D geometric morphometrics and phylogenetic comparative methods, we evaluate the phylogenetic, functional, and size-related effects on 3D pelvis shape in a sample of 33 species of carnivorans. Using surface models derived from laser scans, we collected a suite of landmarks (N = 24) and curve semilandmarks (N = 147). Principal component analysis on Procrustes coordinates demonstrates patterns of shape change in the ischiopubis and ilium likely related to allometry. Phylogenetic generalized least squares analysis on principal component scores demonstrates that phylogeny and body size have greater effects on pelvic shape than locomotor function. Our results corroborate recent research finding little evidence of locomotor specialization in the pelvis of carnivorans. More research on pelvic morphological integration and evolvability is necessary to understand the factors driving pelvic evolution in carnivorans.
Collapse
Affiliation(s)
- Kristi L Lewton
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA, United States of America.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America.,Department of Mammalogy, Natural History Museum of Los Angeles, Los Angeles, CA, United States of America
| | - Ryan Brankovic
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - William A Byrd
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA, United States of America.,Department of Life Sciences, Santa Monica College, Santa Monica, CA, United States of America
| | - Daniela Cruz
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Jocelyn Morales
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Serin Shin
- North Hollywood High School, North Hollywood, CA, United States of America
| |
Collapse
|
6
|
Abstract
Oreopithecus bambolii (8.3-6.7 million years old) is the latest known hominoid from Europe, dating to approximately the divergence time of the Pan-hominin lineages. Despite being the most complete nonhominin hominoid in the fossil record, the O. bambolii skeleton IGF 11778 has been, for decades, at the center of intense debate regarding the species' locomotor behavior, phylogenetic position, insular paleoenvironment, and utility as a model for early hominin anatomy. Here we investigate features of the IGF 11778 pelvis and lumbar region based on torso preparations and supplemented by other O. bambolii material. We correct several crucial interpretations relating to the IGF 11778 anterior inferior iliac spine and lumbar vertebrae structure and identifications. We find that features of the early hominin Ardipithecus ramidus torso that are argued to have permitted both lordosis and pelvic stabilization during upright walking are not present in O. bambolii However, O. bambolii also lacks the complete reorganization for torso stiffness seen in extant great apes (i.e., living members of the Hominidae), and is more similar to large hylobatids in certain aspects of torso form. We discuss the major implications of the O. bambolii lower torso anatomy and how O. bambolii informs scenarios of hominoid evolution.
Collapse
|
7
|
Fatica LM, Almécija S, McFarlin SC, Hammond AS. Pelvic shape variation among gorilla subspecies: Phylogenetic and ecological signals. J Hum Evol 2019; 137:102684. [DOI: 10.1016/j.jhevol.2019.102684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023]
|
8
|
A late Miocene hominid partial pelvis from Hungary. J Hum Evol 2019; 136:102645. [DOI: 10.1016/j.jhevol.2019.102645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 11/22/2022]
|
9
|
Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins. Proc Natl Acad Sci U S A 2018; 115:4134-4139. [PMID: 29610309 PMCID: PMC5910817 DOI: 10.1073/pnas.1715120115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The evolution of humans’ distinct bipedal gait remains a focus of research and debate. Many reconstructions of hominin locomotor evolution assume climbing capability trades off against walking economy, with improvement in one requiring diminishment of the other, but few have tested these functional inferences experimentally. In this study, we integrate experimental locomotor mechanics from humans and other primates with osteological measurements to assess the locomotor capabilities of early hominins. Our analyses show that changes in the ischium and hamstrings would have made walking more economical without reducing the utility of these muscles for climbing in early hominins. A wider set of evolutionary solutions may have been available to early hominins than previously recognized. The evolutionary emergence of humans’ remarkably economical walking gait remains a focus of research and debate, but experimentally validated approaches linking locomotor capability to postcranial anatomy are limited. In this study, we integrated 3D morphometrics of hominoid pelvic shape with experimental measurements of hip kinematics and kinetics during walking and climbing, hamstring activity, and passive range of hip extension in humans, apes, and other primates to assess arboreal–terrestrial trade-offs in ischium morphology among living taxa. We show that hamstring-powered hip extension during habitual walking and climbing in living apes and humans is strongly predicted, and likely constrained, by the relative length and orientation of the ischium. Ape pelves permit greater extensor moments at the hip, enhancing climbing capability, but limit their range of hip extension, resulting in a crouched gait. Human pelves reduce hip extensor moments but permit a greater degree of hip extension, which greatly improves walking economy (i.e., distance traveled/energy consumed). Applying these results to fossil pelves suggests that early hominins differed from both humans and extant apes in having an economical walking gait without sacrificing climbing capability. Ardipithecus was capable of nearly human-like hip extension during bipedal walking, but retained the capacity for powerful, ape-like hip extension during vertical climbing. Hip extension capability was essentially human-like in Australopithecus afarensis and Australopithecus africanus, suggesting an economical walking gait but reduced mechanical advantage for powered hip extension during climbing.
Collapse
|
10
|
Rosenberg KR, DeSilva JM. Evolution of the Human Pelvis. Anat Rec (Hoboken) 2017; 300:789-797. [PMID: 28406563 DOI: 10.1002/ar.23580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
No bone in the human postcranial skeleton differs more dramatically from its match in an ape skeleton than the pelvis. Humans have evolved a specialized pelvis, well-adapted for the rigors of bipedal locomotion. Precisely how this happened has been the subject of great interest and contention in the paleoanthropological literature. In part, this is because of the fragility of the pelvis and its resulting rarity in the human fossil record. However, new discoveries from Miocene hominoids and Plio-Pleistocene hominins have reenergized debates about human pelvic evolution and shed new light on the competing roles of bipedal locomotion and obstetrics in shaping pelvic anatomy. In this issue, 13 papers address the evolution of the human pelvis. Here, we summarize these new contributions to our understanding of pelvic evolution, and share our own thoughts on the progress the field has made, and the questions that still remain. Anat Rec, 300:789-797, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen R Rosenberg
- Department of Anthropology, University of Delaware, Newark, Delaware
| | - Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|