1
|
Lawrence AB, Hammond AS, Ward CV. Acetabular orientation, pelvic shape, and the evolution of hominin bipedality. J Hum Evol 2025; 200:103633. [PMID: 39765141 DOI: 10.1016/j.jhevol.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 03/09/2025]
Abstract
Hominin pelvic form differs dramatically from that of other primates by having more laterally facing iliac blades, a wider sacrum, and a larger, transversely broad pelvic inlet. The orientation of the acetabulum may also differ, plausibly related to differences in load transmission during upright posture and habitual bipedal locomotion, which may, in turn, affect overall pelvic geometry. We compared acetabular orientation in humans, a phylogenetically broad sample of extant anthropoid primates, and fossil hominins including Australopithecus afarensis (A.L. 288-1, KSD-VP-1/1), Australopithecus africanus (Sts 14), Australopithecus sediba (MH2), and Homo neanderthalensis (Kebara 2). We measured the three-dimensional orientation of the acetabulum on in silico models of individual hipbones aligned to the median plane by registering models to landmark coordinates on articulated pelves. Humans and fossil hominins both possess significantly more ventrally opening acetabula than other extant anthropoids, which exhibit laterally facing acetabula. The orientation of the hominin acetabulum was essentially humanlike by at least 3.6 Ma, well before the appearance of other unique features in the pelvis of Homo that may be associated with long-distance walking or running, thermoregulation, parturition, and larger body size in this genus. These results suggest that the ventral orientation of the acetabulum is a key component in the suite of pelvic characteristics related to habitual bipedality in hominins and should be considered in future analyses of hominin pelvic morphology.
Collapse
Affiliation(s)
- Austin B Lawrence
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Post NW, Gilbert CC, Pugh KD, Mongle CS. Implications of outgroup selection in the phylogenetic inference of hominoids and fossil hominins. J Hum Evol 2023; 184:103437. [PMID: 37783198 DOI: 10.1016/j.jhevol.2023.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023]
Abstract
Understanding the phylogenetic relationships among hominins and other hominoid species is critical to the study of human origins. However, phylogenetic inferences are dependent on both the character data and taxon sampling used. Previous studies of hominin phylogenetics have used Papio and Colobus as outgroups in their analyses; however, these extant monkeys possess many derived traits that may confound the polarities of morphological changes among living apes and hominins. Here, we consider Victoriapithecus and Ekembo as more suitable outgroups. Both Victoriapithecus and Ekembo are anatomically well known and are widely accepted as morphologically primitive stem cercopithecoid and hominoid taxa, respectively, making them more appropriate for inferring polarity for later-occurring hominoid- and hominin-focused analyses. Craniodental characters for both taxa were scored and then added to a previously published matrix of fossil hominin and extant hominoid taxa, replacing outgroups Papio and Colobus over a series of iterative analyses using both parsimony and Bayesian inference methods. Neither the addition nor replacement of outgroup taxa changed tree topology in any analysis. Importantly, however, bootstrap support values and posterior probabilities for nodes supporting their relationships generally increased compared to previous analyses. These increases were the highest at extant hominoid and basal hominin nodes, recovering the molecular ape phylogeny with considerably higher support and strengthening the inferred relationships among basal hominins. Interestingly, however, the inclusion of both extant and fossil outgroups reduced support for the crown hominid node. Our findings suggest that, in addition to improving character polarity estimation, including fossil outgroups generally strengthens confidence in relationships among extant hominoid and basal hominins.
Collapse
Affiliation(s)
- Nicholas W Post
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| | - Christopher C Gilbert
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10024, USA; Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065-5024, USA; PhD Program in Anthropology, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016-4309, USA; Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| | - Kelsey D Pugh
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10024, USA; Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Carrie S Mongle
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| |
Collapse
|
3
|
Harper CM, Roach CS, Goldstein DM, Sylvester AD. Morphological variation of the Pan talus relative to that of Gorilla. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37300336 DOI: 10.1002/ajpa.24796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Differences in talar articular morphology relative to locomotion have recently been found within Pan and Gorilla. Whole-bone talar morphology within, and shared variation among, Pan and Gorilla (sub)species, however, has yet to be investigated. Here we separately analyze talar external shape within Pan (P. t. troglodytes, P. t. schweinfurthii, P. t. verus, P. paniscus) and Gorilla (G. g. gorilla, G. b. beringei, G. b. graueri) relative to degree of arboreality and body size. Pan and Gorilla are additionally analyzed together to determine if consistent shape differences exist within the genera. MATERIALS AND METHODS Talar external shape was quantified using a weighted spherical harmonic analysis. Shape variation both within and among Pan and Gorilla was described using principal component analyses. Root mean square distances were calculated between taxon averages, and resampling statistics conducted to test for pairwise differences. RESULTS P. t. verus (most arboreal Pan) talar shape significantly differs from other Pan taxa (p < 0.05 for pairwise comparisons) driven by more asymmetrical trochlear rims and a medially-set talar head. P. t. troglodytes, P. t. schweinfurthii, and P. paniscus do not significantly differ (p > 0.05 for pairwise comparisons). All gorilla taxa exhibit significantly different talar morphologies (p < 0.007 for pairwise comparisons). The more terrestrial subspecies of G. beringei and P. troglodytes exhibit a superoinferiorly taller talar head/neck complex. DISCUSSION P. t. verus exhibits talar morphologies that have been previously related to more frequent arboreality. The adaptations in the more terrestrial G. beringei and P. troglodytes subspecies may serve to facilitate load transmission.
Collapse
Affiliation(s)
- Christine M Harper
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Caleigh S Roach
- Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Deanna M Goldstein
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Auerbach BM, Savell KRR, Agosto ER. Morphology, evolution, and the whole organism imperative: Why evolutionary questions need multi-trait evolutionary quantitative genetics. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37060292 DOI: 10.1002/ajpa.24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Since Washburn's New Physical Anthropology, researchers have sought to understand the complexities of morphological evolution among anatomical regions in human and non-human primates. Researchers continue, however, to preferentially use comparative and functional approaches to examine complex traits, but these methods cannot address questions about evolutionary process and often conflate function with fitness. Moreover, researchers also tend to examine anatomical elements in isolation, which implicitly assumes independent evolution among different body regions. In this paper, we argue that questions asked in primate evolution are best examined using multiple anatomical regions subjected to model-bound methods built from an understanding of evolutionary quantitative genetics. A nascent but expanding number of studies over the last two decades use this approach, examining morphological integration, evolvability, and selection modeling. To help readers learn how to use these methods, we review fundamentals of evolutionary processes within a quantitative genetic framework, explore the importance of neutral evolutionary theory, and explain the basics of evolutionary quantitative genetics, namely the calculation of evolutionary potential for multiple traits in response to selection. Leveraging these methods, we demonstrate their use to understand non-independence in possible evolutionary responses across the limbs, limb girdles, and basicranium of humans. Our results show that model-bound quantitative genetic methods can reveal unexpected genetic covariances among traits that create a novel but measurable understanding of evolutionary complexity among multiple traits. We advocate for evolutionary quantitative genetic methods to be a standard whenever appropriate to keep studies of primate morphological evolution relevant for the next seventy years and beyond.
Collapse
Affiliation(s)
- Benjamin M Auerbach
- Department of Anthropology, The University of Tennessee, Knoxville, Tennessee, USA
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Kristen R R Savell
- Department of Biology, Sacred Heart University, Fairfield, Connecticut, USA
| | - Elizabeth R Agosto
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Stamos PA, Alemseged Z. Hominin locomotion and evolution in the Late Miocene to Late Pliocene. J Hum Evol 2023; 178:103332. [PMID: 36947894 DOI: 10.1016/j.jhevol.2023.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/24/2023]
Abstract
In this review, we present on the evolution of the locomotor adaptation of hominins in the Late Miocene to Late Pliocene, with emphasis on some of the prominent advances and debates that have occurred over the past fifty years. We start with the challenging issue of defining hominin locomotor grades that are currently used liberally and offer our own working definitions of facultative, habitual, and obligate bipedalism. We then discuss the nature of the Pan-Homo last common ancestor and characterize the locomotor adaptation of Sahelanthropus, Orrorin, and Ardipithecus-often referred to as facultative bipeds-and examine the debates on the extent of bipedality and arboreality in these taxa. Moreover, the question of Middle Pliocene hominin locomotor diversity is addressed based on information derived from the 'Little Foot' specimen from Sterkfontein, footprints from Laetoli, and the Burtele Foot in Ethiopia. Our review suggests that the most convincing evidence for locomotor diversity comes from Burtele, whereas the evidence from Sterkfontein and Laetoli is unconvincing and equivocal, respectively. Finally, we address the decades old issue of the significance of arboreality in the otherwise habitual biped, Australopithecus, with emphasis on Australopithecus afarensis and its implications for the paleobiology of these creatures. We conclude that many of the apelike features encountered, mostly in the upper part of the Australopithecus skeleton, were retained for their significance in climbing. Approaches that have investigated character plasticity and those exploring internal bone structure have shown that the shoulder and limbs in Au. afarensis and Australopithecus africanus were involved in arboreal activities that are thought to be key for feeding, nesting, and predator avoidance. We conclude that many of the so-called retained ape-like features persisted due to stabilizing selection, that early hominins engaged in a considerable amount of arboreality even after Australopithecus had become a habitual biped, and arboreality only ceased to be an important component of hominin locomotor behavior after the emergence of Homo erectus.
Collapse
Affiliation(s)
- Peter A Stamos
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Young M, Richard D, Grabowski M, Auerbach BM, de Bakker BS, Hagoort J, Muthuirulan P, Kharkar V, Kurki HK, Betti L, Birkenstock L, Lewton KL, Capellini TD. The developmental impacts of natural selection on human pelvic morphology. SCIENCE ADVANCES 2022; 8:eabq4884. [PMID: 35977020 PMCID: PMC9385149 DOI: 10.1126/sciadv.abq4884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary responses to selection for bipedalism and childbirth have shaped the human pelvis, a structure that differs substantially from that in apes. Morphology related to these factors is present by birth, yet the developmental-genetic mechanisms governing pelvic shape remain largely unknown. Here, we pinpoint and characterize a key gestational window when human-specific pelvic morphology becomes recognizable, as the ilium and the entire pelvis acquire traits essential for human walking and birth. We next use functional genomics to molecularly characterize chondrocytes from different pelvic subelements during this window to reveal their developmental-genetic architectures. We then find notable evidence of ancient selection and genetic constraint on regulatory sequences involved in ilium expansion and growth, findings complemented by our phenotypic analyses showing that variation in iliac traits is reduced in humans compared to African apes. Our datasets provide important resources for musculoskeletal biology and begin to elucidate developmental mechanisms that shape human-specific morphology.
Collapse
Affiliation(s)
- Mariel Young
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Richard
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool L3 3AF, UK
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Benjamin M. Auerbach
- Department of Anthropology, The University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN, USA
| | - Bernadette S. de Bakker
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | | | - Vismaya Kharkar
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Helen K. Kurki
- Department of Anthropology, University of Victoria, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Lia Betti
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | | | - Kristi L. Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Terence D. Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
7
|
Almécija S, Hammond AS, Thompson NE, Pugh KD, Moyà-Solà S, Alba DM. Fossil apes and human evolution. Science 2021; 372:372/6542/eabb4363. [DOI: 10.1126/science.abb4363] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans diverged from apes (chimpanzees, specifically) toward the end of the Miocene ~9.3 million to 6.5 million years ago. Understanding the origins of the human lineage (hominins) requires reconstructing the morphology, behavior, and environment of the chimpanzee-human last common ancestor. Modern hominoids (that is, humans and apes) share multiple features (for example, an orthograde body plan facilitating upright positional behaviors). However, the fossil record indicates that living hominoids constitute narrow representatives of an ancient radiation of more widely distributed, diverse species, none of which exhibit the entire suite of locomotor adaptations present in the extant relatives. Hence, some modern ape similarities might have evolved in parallel in response to similar selection pressures. Current evidence suggests that hominins originated in Africa from Miocene ape ancestors unlike any living species.
Collapse
Affiliation(s)
- Sergio Almécija
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ashley S. Hammond
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
| | - Nathan E. Thompson
- Department of Anatomy, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Kelsey D. Pugh
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M. Alba
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
8
|
Skulachev VP, Shilovsky GA, Putyatina TS, Popov NA, Markov AV, Skulachev MV, Sadovnichii VA. Perspectives of Homo sapiens lifespan extension: focus on external or internal resources? Aging (Albany NY) 2020; 12:5566-5584. [PMID: 32229707 PMCID: PMC7138562 DOI: 10.18632/aging.102981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
Homo sapiens and naked mole rats (Heterocephalus glaber) are vivid examples of social mammals that differ from their relatives in particular by an increased lifespan and a large number of neotenic features. An important fact for biogerontology is that the mortality rate of H. glaber (a maximal lifespan of more than 32 years, which is very large for such a small rodent) negligibly grows with age. The same is true for modern people in developed countries below the age of 60. It is important that the juvenilization of traits that separate humans from chimpanzees evolved over thousands of generations and millions of years. Rapid advances in technology resulted in a sharp increase in the life expectancy of human beings during the past 100 years. Currently, the human life expectancy has exceeded 80 years in developed countries. It cannot be excluded that the potential for increasing life expectancy by an improvement in living conditions will be exhausted after a certain period of time. New types of geroprotectors should be developed that protect not only from chronic phenoptosis gradual poisoning of the body with reactive oxygen species (ROS) but also from acute phenoptosis, where strong increase in the level of ROS immediately kills an already aged individual. Geroprotectors might be another anti-aging strategy along with neoteny (a natural physiological phenomenon) and technical progress.
Collapse
Affiliation(s)
- Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikita A Popov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
| | - Maxim V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor A Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
9
|
Lewton KL, Brankovic R, Byrd WA, Cruz D, Morales J, Shin S. The effects of phylogeny, body size, and locomotor behavior on the three-dimensional shape of the pelvis in extant carnivorans. PeerJ 2020; 8:e8574. [PMID: 32117630 PMCID: PMC7036272 DOI: 10.7717/peerj.8574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 01/17/2023] Open
Abstract
The mammalian pelvis is thought to exhibit adaptations to the functional demands of locomotor behaviors. Previous work in primates has identified form-function relationships between pelvic shape and locomotor behavior; few studies have documented such relationships in carnivorans, instead focusing on long bones. Most work on the functional morphology of the carnivoran pelvis, in particular, has used univariate measures, with only a few previous studies incorporating a three-dimensional (3D) analysis. Here we test the hypothesis that carnivoran taxa that are characterized by different locomotor modes also differ in 3D shape of the os coxae. Using 3D geometric morphometrics and phylogenetic comparative methods, we evaluate the phylogenetic, functional, and size-related effects on 3D pelvis shape in a sample of 33 species of carnivorans. Using surface models derived from laser scans, we collected a suite of landmarks (N = 24) and curve semilandmarks (N = 147). Principal component analysis on Procrustes coordinates demonstrates patterns of shape change in the ischiopubis and ilium likely related to allometry. Phylogenetic generalized least squares analysis on principal component scores demonstrates that phylogeny and body size have greater effects on pelvic shape than locomotor function. Our results corroborate recent research finding little evidence of locomotor specialization in the pelvis of carnivorans. More research on pelvic morphological integration and evolvability is necessary to understand the factors driving pelvic evolution in carnivorans.
Collapse
Affiliation(s)
- Kristi L Lewton
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA, United States of America.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America.,Department of Mammalogy, Natural History Museum of Los Angeles, Los Angeles, CA, United States of America
| | - Ryan Brankovic
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - William A Byrd
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA, United States of America.,Department of Life Sciences, Santa Monica College, Santa Monica, CA, United States of America
| | - Daniela Cruz
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Jocelyn Morales
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Serin Shin
- North Hollywood High School, North Hollywood, CA, United States of America
| |
Collapse
|
10
|
Yapuncich GS, Bowie A, Belais R, Churchill SE, Walker CS. Predicting body mass of bonobos (Pan paniscus) with human-based morphometric equations. Am J Primatol 2020; 82:e23088. [PMID: 31961002 DOI: 10.1002/ajp.23088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/06/2019] [Accepted: 12/15/2019] [Indexed: 01/31/2023]
Abstract
A primate's body mass covaries with numerous ecological, physiological, and behavioral characteristics. This versatility and potential to provide insight into an animal's life has made body mass prediction a frequent and important objective in paleoanthropology. In hominin paleontology, the most commonly employed body mass prediction equations (BMPEs) are "mechanical" and "morphometric": uni- or multivariate linear regressions incorporating dimensions of load-bearing skeletal elements and stature and living bi-iliac breadth as predictor variables, respectively. The precision and accuracy of BMPEs are contingent on multiple factors, however, one of the most notable and pervasive potential sources of error is extrapolation beyond the limits of the reference sample. In this study, we use a test sample requiring extrapolation-56 bonobos (Pan paniscus) from the Lola ya Bonobo sanctuary in Kinshasa, Democratic Republic of the Congo-to evaluate the predictive accuracy of human-based morphometric BMPEs. We first assess systemic differences in stature and bi-iliac breadth between humans and bonobos. Due to significant differences in the scaling relationships of body mass and stature between bonobos and humans, we use panel regression to generate a novel BMPE based on living bi-iliac breadth. We then compare the predictive accuracy of two previously published morphometric equations with the novel equation and find that the novel equation predicts bonobo body mass most accurately overall (41 of 56 bonobos predicted within 20% of their observed body mass). The novel BMPE is particularly accurate between 25 and 45 kg. Given differences in limb proportions, pelvic morphology, and body tissue composition between the human reference and bonobo test samples, we find these results promising and evaluate the novel BMPE's potential application to fossil hominins.
Collapse
Affiliation(s)
- Gabriel S Yapuncich
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Aleah Bowie
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | | | - Steven E Churchill
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| | - Christopher S Walker
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
| |
Collapse
|
11
|
Abstract
Oreopithecus bambolii (8.3-6.7 million years old) is the latest known hominoid from Europe, dating to approximately the divergence time of the Pan-hominin lineages. Despite being the most complete nonhominin hominoid in the fossil record, the O. bambolii skeleton IGF 11778 has been, for decades, at the center of intense debate regarding the species' locomotor behavior, phylogenetic position, insular paleoenvironment, and utility as a model for early hominin anatomy. Here we investigate features of the IGF 11778 pelvis and lumbar region based on torso preparations and supplemented by other O. bambolii material. We correct several crucial interpretations relating to the IGF 11778 anterior inferior iliac spine and lumbar vertebrae structure and identifications. We find that features of the early hominin Ardipithecus ramidus torso that are argued to have permitted both lordosis and pelvic stabilization during upright walking are not present in O. bambolii However, O. bambolii also lacks the complete reorganization for torso stiffness seen in extant great apes (i.e., living members of the Hominidae), and is more similar to large hylobatids in certain aspects of torso form. We discuss the major implications of the O. bambolii lower torso anatomy and how O. bambolii informs scenarios of hominoid evolution.
Collapse
|
12
|
Fatica LM, Almécija S, McFarlin SC, Hammond AS. Pelvic shape variation among gorilla subspecies: Phylogenetic and ecological signals. J Hum Evol 2019; 137:102684. [DOI: 10.1016/j.jhevol.2019.102684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023]
|
13
|
A late Miocene hominid partial pelvis from Hungary. J Hum Evol 2019; 136:102645. [DOI: 10.1016/j.jhevol.2019.102645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 11/22/2022]
|
14
|
O'Neill MC, Demes B, Thompson NE, Umberger BR. Three-dimensional kinematics and the origin of the hominin walking stride. J R Soc Interface 2019; 15:rsif.2018.0205. [PMID: 30089686 DOI: 10.1098/rsif.2018.0205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/13/2018] [Indexed: 11/12/2022] Open
Abstract
Humans are unique among apes and other primates in the musculoskeletal design of their lower back and pelvis. While the last common ancestor of the Pan-Homo lineages has long been thought to be 'African ape-like', including in its lower back and ilia design, recent descriptions of early hominin and Miocene ape fossils have led to the proposal that its lower back and ilia were more similar to those of some Old World monkeys, such as macaques. Here, we compared three-dimensional kinematics of the pelvis and hind/lower limbs of bipedal macaques, chimpanzees and humans walking at similar dimensionless speeds to test the effects of lower back and ilia design on gait. Our results indicate that locomotor kinematics of bipedal macaques and chimpanzees are remarkably similar, with both species exhibiting greater pelvis motion and more flexed, abducted hind limbs than humans during walking. Some differences between macaques and chimpanzees in pelvis tilt and hip abduction were noted, but they were small in magnitude; larger differences were observed in ankle flexion. Our results suggest that if Pan and Homo diverged from a common ancestor whose lower back and ilia were either 'African ape-like' or more 'Old World monkey-like', at its origin, the hominin walking stride likely involved distinct (i.e. non-human-like) pelvis motion on flexed, abducted hind limbs.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Nathan E Thompson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2013, USA
| |
Collapse
|
15
|
The hominid ilium is shaped by a synapomorphic growth mechanism that is unique within primates. Proc Natl Acad Sci U S A 2019; 116:13915-13920. [PMID: 31235562 DOI: 10.1073/pnas.1905242116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human ilium is significantly shorter and broader than those of all other primates. In addition, it exhibits an anterior inferior iliac spine (AIIS) that emerges via a secondary center of ossification, which is unique to hominids (i.e., all taxa related to the human clade following their phyletic separation from the African apes). Here, we track the ontogeny of human and other primate ossa coxae. The human pattern is unique, from anlage to adulthood, and fusion of its AIIS is the capstone event in a repositioning of the anterior gluteals that maximizes control of pelvic drop during upright walking. It is therefore a hominid synapomorphy that can be used to assess the presence and age of bipedal locomotion in extinct taxa.
Collapse
|
16
|
Ward CV, Maddux SD, Middleton ER. Three‐dimensional anatomy of the anthropoid bony pelvis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:3-25. [DOI: 10.1002/ajpa.23425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Carol V. Ward
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences BuildingUniversity of MissouriColumbia Missouri 65212
| | - Scott D. Maddux
- Center for Anatomical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie BoulevardFt. Worth Texas 76107
| | - Emily R. Middleton
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences BuildingUniversity of MissouriColumbia Missouri 65212
| |
Collapse
|
17
|
Thompson NE, Almécija S. The evolution of vertebral formulae in Hominoidea. J Hum Evol 2017; 110:18-36. [DOI: 10.1016/j.jhevol.2017.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 01/06/2023]
|
18
|
Rosenberg KR, DeSilva JM. Evolution of the Human Pelvis. Anat Rec (Hoboken) 2017; 300:789-797. [PMID: 28406563 DOI: 10.1002/ar.23580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
No bone in the human postcranial skeleton differs more dramatically from its match in an ape skeleton than the pelvis. Humans have evolved a specialized pelvis, well-adapted for the rigors of bipedal locomotion. Precisely how this happened has been the subject of great interest and contention in the paleoanthropological literature. In part, this is because of the fragility of the pelvis and its resulting rarity in the human fossil record. However, new discoveries from Miocene hominoids and Plio-Pleistocene hominins have reenergized debates about human pelvic evolution and shed new light on the competing roles of bipedal locomotion and obstetrics in shaping pelvic anatomy. In this issue, 13 papers address the evolution of the human pelvis. Here, we summarize these new contributions to our understanding of pelvic evolution, and share our own thoughts on the progress the field has made, and the questions that still remain. Anat Rec, 300:789-797, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen R Rosenberg
- Department of Anthropology, University of Delaware, Newark, Delaware
| | - Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
19
|
Middleton ER, Winkler ZJ, Hammond AS, Plavcan JM, Ward CV. Determinants of Iliac Blade Orientation in Anthropoid Primates. Anat Rec (Hoboken) 2017; 300:810-827. [PMID: 28406557 DOI: 10.1002/ar.23557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 10/09/2016] [Indexed: 01/22/2023]
Abstract
Orientation of the iliac blades is a key feature that appears to distinguish extant apes from monkeys. Iliac morphology is hypothesized to reflect variation in thoracic shape that, in turn, reflects adaptations for shoulder and forearm function in anthropoids. Iliac orientation is traditionally measured relative to the acetabulum, whereas functional explanations pertain to its orientation relative to the cardinal anatomical planes. We investigated iliac orientation relative to a median plane using digital models of hipbones registered to landmark data from articulated pelves. We fit planes to the iliac surfaces, midline, and acetabulum, and investigated linear metrics that characterize geometric relationships of the iliac margins. Our results demonstrate that extant hominoid ilia are not rotated into a coronal plane from a more sagittal position in basal apes and monkeys but that the apparent rotation is the result of geometric changes within the ilia. The whole ilium and its gluteal surface are more coronally oriented in apes, but apes and monkeys do not differ in orientation of the iliac fossa. The angular differences in the whole blade and gluteal surface primarily reflect a narrower iliac tuberosity set closer to the midline in extant apes, reflecting a decrease in erector spinae muscle mass associated with stiffening of the lumbar spine. Mediolateral breadth across the ventral dorsal iliac spines is only slightly greater in extant apes than in monkeys. These results demonstrate that spinal musculature and mobility have a more significant effect on pelvic morphology than does shoulder orientation, as had been previously hypothesized. Anat Rec, 300:810-827, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily R Middleton
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| | - Zachariah J Winkler
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| | - Ashley S Hammond
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, Washington DC, 20052
| | - J Michael Plavcan
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, 72701
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| |
Collapse
|
20
|
Hammond AS, Royer DF, Fleagle JG. The Omo-Kibish I pelvis. J Hum Evol 2017; 108:199-219. [PMID: 28552208 DOI: 10.1016/j.jhevol.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/13/2022]
Abstract
Omo-Kibish I (Omo I) from southern Ethiopia is the oldest anatomically modern Homo sapiens skeleton currently known (196 ± 5 ka). A partial hipbone (os coxae) of Omo I was recovered more than 30 years after the first portion of the skeleton was recovered, a find which is significant because human pelves can be informative about an individual's sex, age-at-death, body size, obstetrics and parturition, and trunk morphology. Recent human pelves are distinct from earlier Pleistocene Homo spp. pelves because they are mediolaterally narrower in bispinous breadth, have more vertically oriented ilia, lack a well-developed iliac pillar, and have distinct pubic morphology. The pelvis of Omo I provides an opportunity to test whether the earliest modern humans had the pelvic morphology characteristic of modern humans today and to shed light onto the paleobiology of the earliest humans. Here, we formally describe the preservation and morphology of the Omo I hipbone, and quantitatively and qualitatively compare the hipbone to recent humans and relevant fossil Homo. The Omo I hipbone is modern human in appearance, displaying a moderate iliac tubercle (suggesting a reduced iliac pillar) and an ilium that is not as laterally flaring as earlier Homo. Among those examined in this study, the Omo I ischium is most similar in shape to (but substantially larger than) that of recent Sudanese people. Omo I has features that suggest this skeleton belonged to a female. The stature estimates in this study were derived from multiple bones from the upper and lower part of the body, and suggest that there may be differences in the upper and lower limb proportions of the earliest modern humans compared to recent humans. The large size and robusticity of the Omo I pelvis is in agreement with other studies that have found that modern human reduction in postcranial robusticity occurred later in our evolutionary history.
Collapse
Affiliation(s)
- Ashley S Hammond
- Center for Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, DC, 20052, USA.
| | - Danielle F Royer
- Department of Cell and Developmental Biology, University of Colorado, Denver, CO, 80204, USA
| | - John G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|