1
|
Wichmann T, Nelson A, Torres ERS, Svenningsson P, Marongiu R. Leveraging animal models to understand non-motor symptoms of Parkinson's disease. Neurobiol Dis 2025; 208:106848. [PMID: 40023327 DOI: 10.1016/j.nbd.2025.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease is diagnosed based on motor symptoms, but non-motor symptoms of the disease, such as cognitive impairment, autonomic dysfunction, hyposmia, sleep disorders, and psychiatric disorders heavily impact patient and caregiver quality of life. It has proven challenging to faithfully reproduce and quantify these non-motor phenotypes. Indeed, many non-motor signs in animals that may phenotypically resemble features in patients may be caused by different mechanisms or may not be consistent within the same or similar models. In this review, we survey the existing literature on the assessment of non-motor signs in parkinsonian rodents and non-human primates. We highlight the gaps in our understanding and suggest how researchers might improve experimental designs to produce more meaningful results with the hope of better understanding the disease and developing better therapies.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30329, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alexandra Nelson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Eileen Ruth S Torres
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Per Svenningsson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Roberta Marongiu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Genetic Medicine, New-York Hospital-Cornell Medical College, New York, NY, USA; Feil Family Brain and Mind Institute, New-York Hospital-Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Moceri S, Bäuerle N, Habermeyer J, Ratz-Wirsching V, Harrer J, Distler J, Schulze-Krebs A, Timotius IK, Bluhm A, Hartlage-Rübsamen M, Roßner S, Winkler J, Xiang W, Hörsten SV. Young human alpha synuclein transgenic (BAC-SNCA) mice display sex- and gene-dose-dependent phenotypic disturbances. Behav Brain Res 2024; 460:114781. [PMID: 38043677 DOI: 10.1016/j.bbr.2023.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of aggregated alpha synuclein (aSyn). The disease often presents with early prodromal non-motor symptoms and later motor symptoms. Diagnosing PD based purely on motor symptoms is often too late for successful intervention, as a significant neuronal loss has already occurred. Furthermore, the lower prevalence of PD in females is not well understood, highlighting the need for a better understanding of the interaction between sex and aSyn, the crucial protein for PD pathogenesis. Here, we conducted a comprehensive phenotyping study in 1- to 5-month-old mice overexpressing human aSyn gene (SNCA) in a bacterial artificial chromosome (BAC-SNCA). We demonstrate a SNCA gene-dose-dependent increase of human aSyn and phosphorylated aSyn, as well as a decrease in tyrosine hydroxylase expression in BAC-SNCA mice, with more pronounced effects in male mice. Phosphorylated aSyn was already found in the dorsal motor nucleus of the vagus nerve of 2-month-old mice. This was time-wise associated with significant gait altrations in BAC-SNCA mice as early as 1 and 3 months of age using CatWalk gait analysis. Furthermore, anxiety-related behavioral tests revealed an increase in anxiety levels in male BAC-SNCA mice. Finally, 5-month-old male BAC-SNCA mice exhibited a SNCA gene-dose-dependent elevation in energy expenditure in automated home-cage monitoring. For the first time, these findings describe early-onset, sex- and gene-dose-dependent, aSyn-mediated disturbances in BAC-SNCA mice, providing a model for sex-differences, early-onset neuropathology, and prodromal symptoms of PD.
Collapse
Affiliation(s)
- Sandra Moceri
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Natascha Bäuerle
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Johanna Habermeyer
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veronika Ratz-Wirsching
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Julia Harrer
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jörg Distler
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Anja Schulze-Krebs
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ivanna K Timotius
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; Department of Electronic Engineering, Satya Wacana Christian University, 50711 Salatiga, Indonesia
| | - Alexandra Bluhm
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | | | - Steffen Roßner
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
3
|
Zhu C, Wang L, Nie X, Yang X, Gao K, Jiang Z. Dietary dibutyryl cAMP supplementation regulates the fat deposition in adipose tissues of finishing pigs via cAMP/PKA pathway. Anim Biotechnol 2023; 34:921-934. [PMID: 34871537 DOI: 10.1080/10495398.2021.2003373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study investigated potential mechanism of dibutyryl-cAMP (db-cAMP) on porcine fat deposition. (1) Exp.1, 72 finishing pigs were allotted to 3 treatments (0, 10 or 20 mg/kg dbcAMP) with 6 replicates. dbcAMP increased the hormone sensitive lipase (HSL) activity and expression of β-adrenergic receptor (β-AR) and growth hormone receptor (GHR), but decreased expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2) and adipocyte fatty acid binding protein (A-FABP) in back fat. dbcAMP upregulated expression of β-AR, GHR, PPAR-γ2 and A-FABP, but decreased insulin receptor (INSR) expression in abdominal fat. Dietary dbcAMP increased HSL activity and expression of G protein-coupled receptor (GPCR), cAMP-response element-binding protein (CREB) and insulin-like growth factor-1 (IGF-1), but decreased fatty acid synthase (FAS) and lipoprotein lipase (LPL) activities, and expression of INSR, cAMP-response element-binding protein (C/EBP-α) and A-FABP in perirenal fat. (2) Exp. 2, dbcAMP suppressed the proliferation and differentiation of porcine preadipocytes in a time- and dose-dependent manner, which might be associated with increased activities of cAMP and protein kinase A (PKA), and expression of GPCR, β-AR, GHR and CREB via inhibiting C/EBP-α and PPAR-γ2 expression. Collectively, dbcAMP treatment may reduce fat deposition by regulating gene expression related to adipocyte differentiation and fat metabolism partially via cAMP-PKA pathway.
Collapse
Affiliation(s)
- Cui Zhu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
4
|
Bongioanni P, Del Carratore R, Dolciotti C, Diana A, Buizza R. Effects of Global Warming on Patients with Dementia, Motor Neuron or Parkinson's Diseases: A Comparison among Cortical and Subcortical Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013429. [PMID: 36294010 PMCID: PMC9602967 DOI: 10.3390/ijerph192013429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/13/2023]
Abstract
Exposure to global warming can be dangerous for health and can lead to an increase in the prevalence of neurological diseases worldwide. Such an effect is more evident in populations that are less prepared to cope with enhanced environmental temperatures. In this work, we extend our previous research on the link between climate change and Parkinson's disease (PD) to also include Alzheimer's Disease and other Dementias (AD/D) and Amyotrophic Lateral Sclerosis/Motor Neuron Diseases (ALS/MND). One hundred and eighty-four world countries were clustered into four groups according to their climate indices (warming and annual average temperature). Variations between 1990 and 2016 in the diseases' indices (prevalence, deaths, and disability-adjusted life years) and climate indices for the four clusters were analyzed. Unlike our previous work on PD, we did not find any significant correlation between warming and epidemiological indices for AD/D and ALS/MND patients. A significantly lower increment in prevalence in countries with higher temperatures was found for ALS/MND patients. It can be argued that the discordant findings between AD/D or ALS/MND and PD might be related to the different features of the neuronal types involved and the pathophysiology of thermoregulation. The neurons of AD/D and ALS/MND patients are less vulnerable to heat-related degeneration effects than PD patients. PD patients' substantia nigra pars compacta (SNpc), which are constitutively frailer due to their morphology and function, fall down under an overwhelming oxidative stress caused by climate warming.
Collapse
Affiliation(s)
- Paolo Bongioanni
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
- NeuroCare onlus, 56100 Pisa, Italy
| | | | - Cristina Dolciotti
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
- NeuroCare onlus, 56100 Pisa, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09100 Cagliari, Italy
| | - Roberto Buizza
- Life Science Institute, Scuola Superiore Sant’Anna, 56100 Pisa, Italy
| |
Collapse
|
5
|
Liu M, Jiao Q, Du X, Bi M, Chen X, Jiang H. Potential Crosstalk Between Parkinson's Disease and Energy Metabolism. Aging Dis 2021; 12:2003-2015. [PMID: 34881082 PMCID: PMC8612621 DOI: 10.14336/ad.2021.0422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/22/2021] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of alpha-synuclein (α-Syn) in the substantia nigra (SN) and the degeneration of nigrostriatal dopaminergic (DAergic) neurons. Some studies have reported that the pathology of PD originates from the gastrointestinal (GI) tract, which also serves as an energy portal, and develops upward along the neural pathway to the central nervous system (CNS), including the dorsal motor nucleus of vagus (DMV), SN, and hypothalamus, which are also involved in energy metabolism control. Therefore, we discuss the alterations of nuclei that regulate energy metabolism in the development of PD. In addition, due to their anti-inflammatory, antiapoptotic and antioxidative roles, metabolism-related peptides are involved in the progression of PD. Furthermore, abnormal glucose and lipid metabolism are common in PD patients and exacerbate the pathological changes in PD. Therefore, in this review, we attempt to explain the correlation between PD and energy metabolism, which may provide possible strategies for PD treatment.
Collapse
Affiliation(s)
- Meiqiu Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|