1
|
Wealing JC, Cholanian M, Flanigan EG, Levine RB, Fregosi RF. Diverse physiological properties of hypoglossal motoneurons innervating intrinsic and extrinsic tongue muscles. J Neurophysiol 2019; 122:2054-2060. [PMID: 31533009 PMCID: PMC6879950 DOI: 10.1152/jn.00478.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
The mammalian tongue contains eight muscles that collaborate to ensure that suckling, swallowing, and other critical functions are robust and reliable. Seven of the eight tongue muscles are innervated by hypoglossal motoneurons (XIIMNs). A somatotopic organization of the XII motor nucleus, defined in part by the mechanical action of a neuron's target muscle, has been described, but whether or not XIIMNs within a compartment are functionally specialized is unsettled. We hypothesize that developing XIIMNs are assigned unique functional properties that reflect the challenges that their target muscle faces upon the transition from in utero to terrestrial life. To address this, we studied XIIMNs that innervate intrinsic and extrinsic tongue muscles, because intrinsic muscles play a more prominent role in suckling than the extrinsic muscles. We injected dextran-rhodamine into the intrinsic longitudinal muscles (IL) and the extrinsic genioglossus, and physiologically characterized the labeled XIIMNs. Consistent with earlier work, IL XIIMNs (n = 150) were located more dorsally within the nucleus, and GG XIIMNs (n = 55) more ventrally. Whole cell recordings showed that resting membrane potential was, on average, 9 mV more depolarized in IL than in GG XIIMNs (P = 0.0019), and the firing threshold in response to current injection was lower in IL (-31 ± 23 pA) than in GG XIIMNs (225 ± 39 pA; P < 0.0001). We also found that the appearance of net outward currents in GG XIIMNs occurred at more hyperpolarized membrane potentials than IL XIIMNs, consistent with lower excitability in GG XIIMNs. These observations document muscle-specific functional specializations among XIIMNs.NEW & NOTEWORTHY The hypoglossal motor nucleus contains motoneurons responsible for innervating one of seven different muscles with notably different biomechanics and patterns of use. Whether or not motoneurons innervating the different muscles also have unique functional properties (e.g., spiking behavior, synaptic physiology) is poorly understood. In this work we show that neonatal hypoglossal motoneurons innervating muscles that shape the tongue (intrinsic longitudinal muscles) have different electrical properties than those innervating the genioglossus, which controls tongue position.
Collapse
Affiliation(s)
- J. C. Wealing
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - M. Cholanian
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - E. G. Flanigan
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - R. B. Levine
- Department of Physiology, The University of Arizona, Tucson, Arizona
- Department of Neuroscience, The University of Arizona, Tucson, Arizona
| | - R. F. Fregosi
- Department of Physiology, The University of Arizona, Tucson, Arizona
- Department of Neuroscience, The University of Arizona, Tucson, Arizona
| |
Collapse
|
2
|
Kidder IJ, Mudery JA, Barreda S, Taska DJ, Bailey EF. Evaluating the control: minipump implantation and breathing behavior in the neonatal rat. J Appl Physiol (1985) 2016; 121:615-22. [PMID: 27402557 PMCID: PMC11735011 DOI: 10.1152/japplphysiol.00080.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
We evaluated genioglossus (GG) gross motoneuron morphology, electromyographic (EMG) activities, and respiratory patterning in rat pups allowed to develop without interference (unexposed) and pups born to dams subjected to osmotic minipump implantation in utero (saline-exposed). In experiment 1, 48 Sprague-Dawley rat pups (Charles-River Laboratories), ages postnatal day 7 (P7) through postnatal day 10 (P10), were drawn from two experimental groups, saline-exposed (n = 24) and unexposed (n = 24), and studied on P7, P8, P9, or P10. Pups in both groups were sedated (Inactin hydrate, 70 mg/kg), and fine-wire electrodes were inserted into the GG muscle of the tongue and intercostal muscles to record EMG activities during breathing in air and at three levels of normoxic hypercapnia [inspired CO2 fraction (FiCO2 ): 0.03, 0.06, and 0.09]. Using this approach, we assessed breathing frequency, heart rate, apnea type, respiratory event types, and respiratory stability. In experiment 2, 16 rat pups were drawn from the same experimental groups, saline-exposed (n = 9) and unexposed (n = 7), and used in motoneuron-labeling studies. In these pups a retrograde dye was injected into the GG muscle, and the brain stems were subsequently harvested and sliced. Labeled GG motoneurons were identified with microscopy, impaled, and filled with Lucifer yellow. Double-labeled motoneurons were reconstructed, and the number of primary projections and soma volumes were calculated. Whereas pups in each group exhibited the same number (P = 0.226) and duration (P = 0.093) of respiratory event types and comparable motoneuron morphologies, pups in the implant group exhibited more central apneas and respiratory instability relative to pups allowed to develop without interference.
Collapse
Affiliation(s)
- Ian J Kidder
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; and
| | - Jordan A Mudery
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; and
| | - Santiago Barreda
- Department of Linguistics, University of California Davis, Davis, California
| | - David J Taska
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; and
| | - E Fiona Bailey
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; and
| |
Collapse
|
3
|
Abstract
AbstractMore than 35 years ago, Meltzoff and Moore (1977) published their famous article, “Imitation of facial and manual gestures by human neonates.” Their central conclusion, that neonates can imitate, was and continues to be controversial. Here, we focus on an often-neglected aspect of this debate, namely, neonatal spontaneous behaviors themselves. We present a case study of a paradigmatic orofacial “gesture,” namely tongue protrusion and retraction (TP/R). Against the background of new research on mammalian aerodigestive development, we ask: How does the human aerodigestive system develop, and what role does TP/R play in the neonate's emerging system of aerodigestion? We show that mammalian aerodigestion develops in two phases: (1) from the onset of isolated orofacial movementsin uteroto the postnatal mastery of suckling at 4 months after birth; and (2) thereafter, from preparation to the mastery of mastication and deglutition of solid foods. Like other orofacial stereotypies, TP/R emerges in the first phase and vanishes prior to the second. Based upon recent advances in activity-driven early neural development, we suggest a sequence of three developmental events in which TP/R might participate: the acquisition of tongue control, the integration of the central pattern generator (CPG) for TP/R with other aerodigestive CPGs, and the formation of connections within the cortical maps of S1 and M1. If correct, orofacial stereotypies are crucial to the maturation of aerodigestion in the neonatal period but also unlikely to co-occur with imitative behavior.
Collapse
|
4
|
ElMallah MK, Falk DJ, Lane MA, Conlon TJ, Lee KZ, Shafi NI, Reier PJ, Byrne BJ, Fuller DD. Retrograde gene delivery to hypoglossal motoneurons using adeno-associated virus serotype 9. Hum Gene Ther Methods 2012; 23:148-56. [PMID: 22693957 PMCID: PMC4015220 DOI: 10.1089/hgtb.2012.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/02/2012] [Indexed: 11/12/2022] Open
Abstract
Retrograde viral transport (i.e., muscle to motoneuron) enables targeted gene delivery to specific motor pools. Recombinant adeno-associated virus serotype 9 (AAV9) robustly infects motoneurons, but the retrograde transport capabilities of AAV9 have not been systematically evaluated. Accordingly, we evaluated the retrograde transduction efficiency of AAV9 after direct tongue injection in 129SVE mice as well as a mouse model that displays neuromuscular pathology (Gaa(-/-)). Hypoglossal (XII) motoneurons were histologically evaluated 8 weeks after tongue injection with AAV9 encoding green fluorescent protein (GFP) with expression driven by the chicken β-actin promoter (1 × 10(11) vector genomes). On average, GFP expression was detected in 234 ± 43 XII motoneurons 8 weeks after AAV9-GFP tongue injection. In contrast, tongue injection with a highly efficient retrograde anatomical tracer (cholera toxin β subunit, CT-β) resulted in infection of 818 ± 88 XII motoneurons per mouse. The retrograde transduction efficiency of AAV9 was similar between the 129SVE mice and those with neuromuscular disease (Gaa(-/-)). Routine hematoxylin and eosin staining and cluster of differentiation (CD) immunostaining for T cells (CD3) indicated no persistent inflammation within the tongue or XII nucleus after AAV9 injection. Additional experiments indicated no adverse effects of AAV9 on the pattern of breathing. We conclude that AAV9 can retrogradely infect a significant portion of a given motoneuron pool in normal and dystrophic mice, and that its transduction efficiency is approximately 30% of what can be achieved with CT-β.
Collapse
Affiliation(s)
- Mai K. ElMallah
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Darin J. Falk
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610
| | - Michael A. Lane
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Thomas J. Conlon
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610
| | - Kun-Ze Lee
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610
| | - Nadeem I. Shafi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Paul J. Reier
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Barry J. Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610
| | - David D. Fuller
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610
| |
Collapse
|
5
|
Carrascal L, Nieto-Gonzalez JL, Torres B, Nunez-Abades P. Changes in somatodendritic morphometry of rat oculomotor nucleus motoneurons during postnatal development. J Comp Neurol 2009; 514:189-202. [PMID: 19274669 DOI: 10.1002/cne.21996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This work investigates the somatodendritic shaping of rat oculomotor nucleus motoneurons (Mns) during postnatal development. The Mns were functionally identified in slice preparation, intracellularly injected with neurobiotin, and three-dimensionally reconstructed. Most of the Mns (approximately 85%) were multipolar and the rest (approximately 15%) bipolar. Forty multipolar Mns were studied and grouped as follows: 1-5, 6-10, 11-15, and 21-30 postnatal days. Two phases were distinguished during postnatal development (P1-P10 and P11-P30). During the first phase, there was a progressive increase in the dendritic complexity; e.g., the number of terminals per neuron increased from 26.3 (P1-P5) to 47.7 (P6-P10) and membrane somatodendritic area from 11,289.9 microm(2) (P1-P5) to 19,235.8 microm(2) (P6-P10). In addition, a few cases of tracer coupling were observed. During the second phase, dendritic elongation took place; e.g., the maximum dendritic length increased from 486.7 microm (P6-P10) to 729.5 microm in adult Mns, with a simplification of dendritic complexity to values near those for the newborn, and a slow, progressive increase in membrane area from 19,235.8 microm(2) (P6-P10) to 24,700.3 microm(2) (P21-P30), while the somatic area remained constant. In conclusion, the electrophysiological changes reported in these Mns with maturation (Carrascal et al. [2006] Neuroscience 140:1223-1237) cannot be fully explained by morphometric variations; the dendritic elongation and increase in dendritic area are features shared with other pools of Mns, whereas changes in dendritic complexity depend on each population; the first phase paralleled the establishment of vestibular circuitry and the second paralleled eyelid opening.
Collapse
Affiliation(s)
- Livia Carrascal
- Department of Physiology and Zoology, University of Seville, 41012 Seville, Spain
| | | | | | | |
Collapse
|
6
|
Smith JC, McClung JR, Goldberg SJ. Effects of 12 days of artificial rearing on morphology of hypoglossal motoneurons innervating tongue retrusors in rat. ACTA ACUST UNITED AC 2006; 288:280-5. [PMID: 16342211 PMCID: PMC2570339 DOI: 10.1002/ar.a.20277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to examine the influence of reduced tongue activity by artificial rearing on the morphology of motoneurons innervating the extrinsic tongue retrusors. Artificially reared rat pups were fed via gastric cannula from postnatal day 3 to postnatal day 14. Artificially reared animals and dam-reared controls had cholera toxin (subunit B) conjugate of horseradish peroxidase injected into the styloglossus to label motoneurons innervating hyoglossus and styloglossus on postnatal day 13 and postnatal day 59. Following perfusion on postnatal days 14 and 60, serial transverse sections treated with tetramethyl benzidine and counterstained neutral red were used to analyze motoneuron morphology. The shorter diameter of hyoglossus motoneurons increased with age for the dam-reared but not the artificially reared group. There was a tendency for a similar pattern for styloglossus motoneurons across the two rearing groups. The changes in form factor reflected the changes in shorter diameter for both motoneuron pools. Therefore, reducing suckling activity during normal postnatal development leads to diminished motoneuron somal growth in rats. This may also be the case in premature infants necessarily fed artificially.
Collapse
Affiliation(s)
- J Chadwick Smith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | | | | |
Collapse
|