1
|
Zhang P, Yue X, Yan E, He L, Wan B, Zhang X, Yin J. Maternal Intake of Laminarin Improves Infant Growth and Health by Fortifying Metabolite Profiles of Colostrum and Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26178-26188. [PMID: 39542438 PMCID: PMC11613986 DOI: 10.1021/acs.jafc.4c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Laminarin mainly consists of fucoidan, a unique, naturally active sulfate polysaccharide. Laminarin is known for its outstanding multiple bioactives, but its role in lactation remains largely unknown. Therefore, this study aimed to explore the influence of maternal intake of laminarin on lactation and infant health in a porcine model. A total of 20 sows of parity 6.85 ± 0.88 with similar comprehensive scores were randomly allocated to two dietary treatments to receive a basal diet with/without supplementary laminarin. We showed that maternal intake of laminarin improved the antioxidant capacity and intestinal barrier function of the offspring, alleviated the inflammatory response, and facilitated infant growth and health. Mechanistically, maternal consumption of laminarin significantly modified the metabolite profiles of colostrum and milk. We also demonstrated in a vitro study that coniferyl aldehyde, a representative differential milk metabolite, enhanced antioxidant capacity and tight junction protein expression levels in intestinal epithelial cells. In summary, maternal intake of laminarin facilitated offspring health and growth by fortifying milk metabolites.
Collapse
Affiliation(s)
| | | | - Enfa Yan
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Linjuan He
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Boyang Wan
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal
Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Glez-Peña D, López-Fernández H, Duque P, Vieira CP, Vieira J. Inferences on the evolution of the ascorbic acid synthesis pathway in insects using Phylogenetic Tree Collapser (PTC), a tool for the automated collapsing of phylogenetic trees using taxonomic information. J Integr Bioinform 2024; 21:jib-2023-0051. [PMID: 39054685 PMCID: PMC11377030 DOI: 10.1515/jib-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
When inferring the evolution of a gene/gene family, it is advisable to use all available coding sequences (CDS) from as many species genomes as possible in order to infer and date all gene duplications and losses. Nowadays, this means using hundreds or even thousands of CDSs, which makes the inferred phylogenetic trees difficult to visualize and interpret. Therefore, it is useful to have an automated way of collapsing large phylogenetic trees according to a taxonomic term decided by the user (family, class, or order, for instance), in order to highlight the minimal set of sequences that should be used to recapitulate the full history of the gene/gene family being studied at that taxonomic level, that can be refined using additional software. Here we present the Phylogenetic Tree Collapser (PTC) program (https://github.com/pegi3s/phylogenetic-tree-collapser), a flexible tool for automated tree collapsing using taxonomic information, that can be easily used by researchers without a background in informatics, since it only requires the installation of Docker, Podman or Singularity. The utility of PTC is demonstrated by addressing the evolution of the ascorbic acid synthesis pathway in insects. A Docker image is available at Docker Hub (https://hub.docker.com/r/pegi3s/phylogenetic-tree-collapser) with PTC installed and ready-to-run.
Collapse
Affiliation(s)
- Daniel Glez-Peña
- ESEI: Escuela Superior de Ingeniería Informática, University of Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO: Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Hugo López-Fernández
- ESEI: Escuela Superior de Ingeniería Informática, University of Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO: Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Pedro Duque
- Instituto de Investigação e Inovação em Saúde (I3S), 26706 Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 26706 Universidade do Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde (I3S), 26706 Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (I3S), 26706 Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Luo K, Yu X, Wang J, Liu J, Li X, Pan M, Huang D, Mai K, Zhang W. Ascorbic acid biosynthesis in Pacific abalone Haliotis discus hannai Ino and L-gulonolactone oxidase gene loss as an independent event. Int J Biol Macromol 2024; 268:131733. [PMID: 38649080 DOI: 10.1016/j.ijbiomac.2024.131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Up to now, it has been believed that invertebrates are unable to synthesize ascorbic acid (AA) in vivo. However, in the present study, the full-length CDs (Coding sequence) of L-gulonolactone oxidase (GLO) from Pacific abalone (Haliotis discus hannai Ino) were obtained through molecular cloning. The Pacific abalone GLO contained a FAD-binding domain in the N-termination, and ALO domain and conserved HWAK motif in the C-termination. The GLO gene possesses 12 exons and 11 introns. The Pacific abalone GLO was expressed in various tissues, including the kidney, digestive gland, gill, intestine, muscle and mantle. The GLO activity assay revealed that GLO activity was only detected in the kidney of Pacific abalone. After a 100-day feeding trial, dietary AA levels did not significantly affect the survival, weight gain, daily increment in shell length, and feed conversion ratio of Pacific abalone. The expression of GLO in the kidney was downregulated by dietary AA. These results implied that the ability to synthesize AA in abalone had not been lost. From the evolutionary perspective, the loss of GLO occurred independently as an independent event by matching with the genomes of various species. The positive selection analysis revealed that the GLO gene underwent purifying selective pressure during its evolution. In conclusion, the present study provided direct evidence to prove that the GLO activity and the ability to synthesize AA exist in abalone. The AA synthesis ability in vertebrates might have originated from invertebrates dating back 930.31 million years.
Collapse
Affiliation(s)
- Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, PR China
| | - Xiaojun Yu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Jia Wang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Xinxin Li
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
4
|
Duque P, Vieira CP, Bastos B, Vieira J. The evolution of vitamin C biosynthesis and transport in animals. BMC Ecol Evol 2022; 22:84. [PMID: 35752765 PMCID: PMC9233358 DOI: 10.1186/s12862-022-02040-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
Background Vitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by l-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals. Results Both GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene. Conclusions The simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02040-7.
Collapse
|
5
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
6
|
Shen J, Zhang M, Mujumdar AS, Chen J. Effects of High Voltage Electrostatic Field and Gelatin-Gum Arabic Composite Film on Color Protection of Freeze-dried Grapefruit Slices. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02839-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Comparative study of conventional and novel combined modes of microwave- and infrared-assisted thawing on quality of frozen green pepper, carrot and cantaloupe. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|