1
|
Mandal S, Kumar BR P, Alam MT, Tripathi PP, Channappa B. Novel Imidazole Phenoxyacetic Acids as Inhibitors of USP30 for Neuroprotection Implication via the Ubiquitin-Rho-110 Fluorometric Assay: Design, Synthesis, and In Silico and Biochemical Assays. ACS Chem Neurosci 2022; 13:1433-1445. [PMID: 35417128 DOI: 10.1021/acschemneuro.2c00076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
USP30, a deubiquitinating enzyme family, forfeits the ubiquitination of E3 ligase and Parkin on the surface of mitochondria. Inhibition of USP30 results in mitophagy and cellular clearance. Herein, by understanding structural requirements, we discovered potential USP30 inhibitors from an imidazole series of ligands via a validated ubiquitin-rhodamine-110 fluorometric assay. A novel catalytic use of the Zn(l-proline)2 complex for the synthesis of tetrasubstituted imidazoles was identified. Among all compounds investigated, 3g and 3f inhibited USP30 at IC50 of 5.12 and 8.43 μM, respectively. The binding mode of compounds at the USP30 binding site was understood by a docking study and interactions with the key amino acids were identified. Compound 3g proved its neuroprotective efficacy by inhibiting apoptosis on SH-SY5Y neuroblastoma cells against dynorphin A (10 μM) treatment. Hence, the present study provides a new protocol to design and develop ligands against USP30, thereby offering a therapeutic strategy under conditions like kidney damage and neurodegenerative disorders including Parkinson's disease.
Collapse
Affiliation(s)
- Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| | - Prashantha Kumar BR
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| | - Md Tanjim Alam
- Council of Scientific and Industrial Research−Indian Institute of Chemical Biology (CSIR−IICB), Kolkata 700032, India
- Indian Institute of Chemical Biology−Translational Research Unit of Excellence (IICB−TRUE), Kolkata 700091, India
| | - Prem Prakash Tripathi
- Council of Scientific and Industrial Research−Indian Institute of Chemical Biology (CSIR−IICB), Kolkata 700032, India
- Indian Institute of Chemical Biology−Translational Research Unit of Excellence (IICB−TRUE), Kolkata 700091, India
- Indian Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya Channappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| |
Collapse
|
2
|
Wang Q, Tian P, Cao Z, Zhang H, Jiang C. Copper‐Catalyzed Remote Direct Thiocyanation of Alkyl C(
sp
3
)−H Bonds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qian Wang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Peiyuan Tian
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Zhong‐Yan Cao
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 People's Republic of China
| | - Hongwei Zhang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Cuiyu Jiang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| |
Collapse
|
3
|
Wu D, Qiu J, Karmaker PG, Yin H, Chen FX. N-Thiocyanatosaccharin: A "Sweet" Electrophilic Thiocyanation Reagent and the Synthetic Applications. J Org Chem 2018; 83:1576-1583. [PMID: 29302964 DOI: 10.1021/acs.joc.7b02850] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
N-Thiocyanatosaccharin (R1) was readily prepared from the sweet additive Saccharin in two steps with a 71% overall yield. By applying this new reagent to diverse nucleophiles such as benzothiophenes, indoles, oxindoles, aromatic amines, phenols, β-keto carbonyl compounds, and aromatic ketones, a novel electrophilic thiocyanation reaction was achieved with high yields (up to 99%). The potential recycling of Saccharin, the wide scope of substrates, and the mild reaction conditions made this protocol much more practical.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology , No. 5 Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jiashen Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology , No. 5 Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Pran Gopal Karmaker
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology , No. 5 Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Hongquan Yin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology , No. 5 Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Fu-Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology , No. 5 Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
4
|
Zhang D, Wang H, Bolm C. Photocatalytic difunctionalisations of alkenes with N-SCN sulfoximines. Chem Commun (Camb) 2018; 54:5772-5775. [DOI: 10.1039/c8cc03178a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reacting N-Br sulfoximines with ammonium thiocyanate leads to unprecedented sulfur reagents, which add to vinyl arenes under photocatalysis via N-centered sulfoximidoyl radicals.
Collapse
Affiliation(s)
- Duo Zhang
- Institute of Organic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - Han Wang
- Institute of Organic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - Carsten Bolm
- Institute of Organic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| |
Collapse
|
5
|
Kaupang Å, Paulsen SM, Steindal CC, Ravna AW, Sylte I, Halvorsen TG, Thoresen GH, Hansen TV. Synthesis, biological evaluation and molecular modeling studies of the PPARβ/δ antagonist CC618. Eur J Med Chem 2015; 94:229-36. [PMID: 25768705 DOI: 10.1016/j.ejmech.2015.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
Herein, we describe the synthesis, biological evaluation and molecular docking of the selective PPARβ/δ antagonist (4-methyl-2-(4-(trifluoromethyl)phenyl)-N-(2-(5-(trifluoromethyl)-pyridin-2-ylsulfonyl)ethyl)thiazole-5-carboxamide)), CC618. Results from in vitro luciferase reporter gene assays against the three known human PPAR subtypes revealed that CC618 selectively antagonizes agonist-induced PPARβ/δ activity with an IC50 = 10.0 μM. As observed by LC-MS/MS analysis of tryptic digests, the treatment of PPARβ/δ with CC618 leads to a covalent modification of Cys249, located centrally in the PPARβ/δ ligand binding pocket, corresponding to the conversion of its thiol moiety to a 5-trifluoromethyl-2-pyridylthioether. Finally, molecular docking is employed to shed light on the mode of action of the antagonist and its structural consequences for the PPARβ/δ ligand binding pocket.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO BOX 1068, Blindern, N-0316 Oslo, Norway
| | - Steinar Martin Paulsen
- MabCent-SFI, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Calin C Steindal
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO BOX 1068, Blindern, N-0316 Oslo, Norway
| | - Aina W Ravna
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ingebrigt Sylte
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Trine G Halvorsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO BOX 1068, Blindern, N-0316 Oslo, Norway
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Medicine, University of Oslo, PO BOX 1068, Blindern, N-0316 Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, Oslo University Hospital, PO Box 1057, Blindern, N-0316 Oslo, Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO BOX 1068, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
6
|
Synthesis, molecular modeling studies and biological evaluation of fluorine substituted analogs of GW 501516. Bioorg Med Chem 2011; 19:6982-8. [DOI: 10.1016/j.bmc.2011.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/16/2011] [Accepted: 10/07/2011] [Indexed: 11/23/2022]
|