1
|
Nafie MS, Kahwash SH, Youssef MM, Dawood KM. Recent advances on quinoxalines as target-oriented chemotherapeutic anticancer agents through apoptosis. Arch Pharm (Weinheim) 2024; 357:e2400225. [PMID: 38822393 DOI: 10.1002/ardp.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The current review outlines all possible recent synthetic platforms to quinoxaline derivatives and the potent stimulated apoptosis mechanisms targeted by anticancer therapies. The currently reported results disclosed that quinoxaline derivatives had promising anticancer potencies against a wide array of cancer cell lines, better than the reference drugs, through target inhibition. This review summarizes some potent quinoxaline derivatives with their synthesis strategies and their potential activities against various molecular targets. Quinoxalines can be considered an important scaffold for apoptosis inducers in cancer cells through inhibiting some molecular targets, so they can be further developed as target-oriented chemotherapeutics.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaima H Kahwash
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Kamal M Dawood
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Mihajlović K, Joksimović N, Petronijević J, Filipović I, Janković N, Milović E, Popovic S, Matic S, Baskic D. Anticancer potential of some β-diketonates: DNA interactions, protein binding properties, and molecular docking study. Nat Prod Res 2023; 37:3191-3197. [PMID: 36412547 DOI: 10.1080/14786419.2022.2148245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
With the goal to discover a new antitumor drug with the better or similar effects to existing, a small series of β-diketonate was tested on a cisplatin-resistant MDA-MB-231 and HeLa tumor cell lines, and nontumor MRC-5 cell line. All compounds showed notable cytotoxicity against both tumor cell lines and good selectivity. Importantly, β-diketonates displayed greater selectivity than cisplatin, which is the crucial factor for a new antitumor drug candidate. Further, investigations with biomacromolecules such as DNA and serum albumin were performed. Investigations showed that tested compounds bind to DNA through intercalation and have appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of tested β-diketonate to DNA or bovine serum albumin. In conclusion, all results indicated the big potential of these compounds for application in clinical practice in future.
Collapse
Affiliation(s)
- Kristina Mihajlović
- Faculty of Science, Department of Chemistry, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Joksimović
- Faculty of Science, Department of Chemistry, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Petronijević
- Faculty of Science, Department of Chemistry, University of Kragujevac, Kragujevac, Serbia
| | - Ignjat Filipović
- Faculty of Science, Department of Chemistry, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, Department of Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Emilija Milović
- Institute for Information Technologies Kragujevac, Department of Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suzana Popovic
- Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Sanja Matic
- Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Dejan Baskic
- Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
3
|
Joksimović N, Petronijević J, Radisavljević S, Petrović B, Mihajlović K, Janković N, Milović E, Milivojević D, Ilić B, Djurić A. Synthesis, characterization, antitumor potential, and investigation of mechanism of action of copper(ii) complexes with acylpyruvates as ligands: interactions with biomolecules and kinetic study. RSC Adv 2022; 12:30501-30513. [PMID: 36337968 PMCID: PMC9597287 DOI: 10.1039/d2ra05797b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Considering the urgency of finding a cure for vicious diseases such as tumors, we have synthesized and characterized a small series of new copper(ii) complexes with biologically important ligands such as acylpyruvate. In addition to this, we used another four copper(ii) complexes, with ligands of the same type to examine the antitumor potential. The antitumor potential of the copper(ii) complexes was examined on three tumor cell lines and one normal human cell line using the MTT assay. All seven tested complexes showed very good cytotoxic effects. Two copper complexes that showed the best antitumor potential were selected for further testing that showed the best potential for potential application in the future. The mechanism of activity of these complexes was examined in detail using tests such as cell cycle, ROS level, oxidative DNA damage, and proteins related to hypoxia analysis. In addition, we examined the binding abilities of these complexes with biomolecules (Guo, Ino, 5'-GMP, BSA, and DNA). The results showed that the tested compounds bind strongly to DNA molecules through intercalation. Also, it has been shown that the tested compounds adequately bind to the BSA molecule, which indicates an even greater potential for some future application of these compounds in clinical practice.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 34000 Kragujevac Serbia
| | - Jelena Petronijević
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 34000 Kragujevac Serbia
| | - Snežana Radisavljević
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 34000 Kragujevac Serbia
| | - Biljana Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 34000 Kragujevac Serbia
| | - Kristina Mihajlović
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 34000 Kragujevac Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Emilija Milović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Dušan Milivojević
- Vinča Institute of Nuclear Science University of Belgrade P.O. Box 522 11001 Belgrade Serbia
| | - Bojana Ilić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia Belgrade Serbia
| | - Ana Djurić
- Institute of Oncology and Radiology of Serbia Pasterova 14 11000 Belgrade Serbia
| |
Collapse
|
4
|
Stalinskaya AL, Martynenko NV, Shulgau ZT, Shustov AV, Keyer VV, Kulakov IV. Synthesis and Antiviral Properties against SARS-CoV-2 of Epoxybenzooxocino[4,3- b]Pyridine Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123701. [PMID: 35744830 PMCID: PMC9230803 DOI: 10.3390/molecules27123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The COVID-19 pandemic is ongoing as of mid-2022 and requires the development of new therapeutic drugs, because the existing clinically approved drugs are limited. In this work, seven derivatives of epoxybenzooxocinopyridine were synthesized and tested for the ability to inhibit the replication of the SARS-CoV-2 virus in cell cultures. Among the described compounds, six were not able to suppress the SARS-CoV-2 virus’ replication. One compound, which is a derivative of epoxybenzooxocinopyridine with an attached side group of 3,4-dihydroquinoxalin-2-one, demonstrated antiviral activity comparable to that of one pharmaceutical drug. The described compound is a prospective lead substance, because the half-maximal effective concentration is 2.23 μg/μL, which is within a pharmacologically achievable range.
Collapse
Affiliation(s)
- Alena L. Stalinskaya
- Institute of Chemistry, Tyumen State University, 15a Perekopskaya St., 625003 Tyumen, Russia; (A.L.S.); (N.V.M.)
| | - Nadezhda V. Martynenko
- Institute of Chemistry, Tyumen State University, 15a Perekopskaya St., 625003 Tyumen, Russia; (A.L.S.); (N.V.M.)
| | - Zarina T. Shulgau
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (A.V.S.); (V.V.K.)
| | - Alexandr V. Shustov
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (A.V.S.); (V.V.K.)
| | - Viktoriya V. Keyer
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (A.V.S.); (V.V.K.)
| | - Ivan V. Kulakov
- Institute of Chemistry, Tyumen State University, 15a Perekopskaya St., 625003 Tyumen, Russia; (A.L.S.); (N.V.M.)
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (A.V.S.); (V.V.K.)
- Correspondence: ; Tel.: +7-912-0775957
| |
Collapse
|
5
|
Anticancer evaluation of the selected tetrahydropyrimidines: 3D-QSAR, cytotoxic activities, mechanism of action, DNA, and BSA interactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Jiang X, Wu K, Bai R, Zhang P, Zhang Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur J Med Chem 2022; 229:114085. [PMID: 34998058 DOI: 10.1016/j.ejmech.2021.114085] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Quinoxalinones are a class of heterocyclic compounds which attract extensive attention owing to their potential in the field of organic synthesis and medicinal chemistry. During the past few decades, many new synthetic strategies toward the functionalization of quinoxalinone based scaffolds have been witnessed. Regrettably, there are only a few reports on the pharmacological activities of quinoxalinone scaffolds from a medicinal chemistry perspective. Therefore, herein we intend to outline the applications of multifunctional quinoxalinones as privileged structures possessing various biological activities, including anticancer, neuroprotective, antibacterial, antiviral, antiparasitic, anti-inflammatory, antiallergic, anti-cardiovascular, anti-diabetes, antioxidation, etc. We hope that this review will facilitate the development of quinoxalinone derivatives in medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Kaiyu Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
7
|
Petronijević J, Joksimović N, Milović E, Crnogorac MĐ, Petrović N, Stanojković T, Milivojević D, Janković N. Antitumor activity, DNA and BSA interactions of novel copper(II) complexes with 3,4-dihydro-2(1H)-quinoxalinones. Chem Biol Interact 2021; 348:109647. [PMID: 34520752 DOI: 10.1016/j.cbi.2021.109647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
In order to discover new therapeutically active agents a series of novel copper(II) complexes with 3,4-dihydro-2(1H)-quinoxalinones were synthesized. All complexes were characterized by IR and EPR spectroscopic techniques and examined for their cytotoxic effect on human cancer cell lines HeLa, LS174, A549 and normal fibroblasts (MRC-5). For further examination of the cytotoxic mechanisms of novel complexes, three of them were chosen for analysing their effects on the distribution of HeLa cells in the cell cycle phases. The results of the flow cytometry analysis suggest that tested complexes lead to time-dependent accumulation of the cells in S and G2/M phases. The strongest accumulation effect showed complex 2d after 48 h of incubation. Competitive experiments with ethidium bromide (EB) indicated that tested compound 2d have affinity to displace EB from the EB-DNA complex through intercalation. Also, the binding parameters values for 2d-BSA complex showed that a reversible 2d-BSA complex is formed and ligand 2d can be stored and carried by BSA.
Collapse
Affiliation(s)
- Jelena Petronijević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, Kragujevac, Serbia.
| | - Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, Kragujevac, Serbia
| | - Emilija Milović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | | | - Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences -National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Serbia
| | - Tatjana Stanojković
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Dušan Milivojević
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences -National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| |
Collapse
|
8
|
Joksimović N, Petronijević J, Milović E, Janković N, Baskić D, Popović S, Todorović D, Matić S, Vraneš M, Tot A. Synthesis, characterization, antitumor potential, BSA and DNA binding properties, and molecular docking study of some novel 3-hydroxy-3-pyrrolin-2-ones. Med Chem 2021; 18:337-352. [PMID: 34344294 DOI: 10.2174/1573406417666210803094127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/05/2020] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In order to make progress in discovering the new agents for cancer treatment with improved properties and considering the fact that 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, we tested series of eleven novels 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones for their antitumor potential. METHODS All novel compounds were characterized by spectral (IR, NMR, MS) and elemental analysis. All novel 3-hydroxy-3-pyrrolin-2-ones were screened for their cytotoxic activity on two cancer cell lines, SW480 and MDA-MB 231, and non-transformed fibroblasts (MRC-5). RESULTS Compounds B8, B9, and B10 showed high cytotoxicity on SW480 cells together with good selectivity towards MRC-5 cells. It is important to empathize that the degree of selectivity of B8 and B10 was high (SI = 5.54 and 12.09, respectively). Besides, we explored the mechanisms of cytotoxicity of novel derivatives, B8, B9, and B10. The assay showed that tested derivatives induce an apoptotic type of cell death in SW480 cells, with a minor percent of necrotic cells. Additionally, to better understand the suitability of the compounds for potential use as anticancer medicaments, we studied their interactions with biomacromolecules (DNA or BSA). The results indicated that the tested compounds have a great affinity to displace EB from the EB-DNA complex through intercalation. Also, DNA and BSA molecular docking study was performed to predict the binding mode and the interaction region of the compounds. CONCLUSION Achieved results indicate that our compounds have the potential to become candidates for use as medicaments.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| | - Jelena Petronijević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| | - Emilija Milović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Dejan Baskić
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac. Serbia
| | - Suzana Popović
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac. Serbia
| | - Danijela Todorović
- University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, Svetozara Markovića 69, 34000 Kragujevac. Serbia
| | - Sanja Matić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac. Serbia
| | - Milan Vraneš
- University of Novi Sad, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad. Serbia
| | - Aleksandar Tot
- University of Novi Sad, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad. Serbia
| |
Collapse
|
9
|
Joksimović N, Janković N, Davidović G, Bugarčić Z. 2,4-Diketo esters: Crucial intermediates for drug discovery. Bioorg Chem 2020; 105:104343. [PMID: 33086180 DOI: 10.1016/j.bioorg.2020.104343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Convenient structures such as 2,4-diketo esters have been widely used as an effective pattern in medicinal chemistry and pharmacology for drug discovery. 2,4-Diketonate is a common scaffold that can be found in many biologically active and naturally occurring compounds. Also, many 2,4-diketo ester derivatives have been prepared due to their suitable synthesis. These synthetic drugs and natural products have shown numerous interesting biological properties with clinical potential as a cure for the broad specter of diseases. This review aims to highlight the important evidence of 2,4-diketo esters as a privileged scaffold in medicinal chemistry and pharmacology. Herein, numerous aspects of 2,4-diketo esters will be summarized, including synthesis and isolation of their derivatives, development of novel synthetic methodologies, the evaluation of their biological properties as well as the mechanisms of action of the diketo ester derivates. This paperwork is expected to be a comprehensive, trustworthy, and critical review of the 2,4-diketo ester intermediate to the chemistry community.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran Davidović
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zorica Bugarčić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
10
|
Janković N, Trifunović Ristovski J, Vraneš M, Tot A, Petronijević J, Joksimović N, Stanojković T, Đorđić Crnogorac M, Petrović N, Boljević I, Matić IZ, Bogdanović GA, Mikov M, Bugarčić Z. Discovery of the Biginelli hybrids as novel caspase-9 activators in apoptotic machines: Lipophilicity, molecular docking study, influence on angiogenesis gene and miR-21 expression levels. Bioorg Chem 2019; 86:569-582. [DOI: 10.1016/j.bioorg.2019.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/03/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|