1
|
Zięba A, Kędzierska E, Jastrzębski MK, Karcz T, Olejarz-Maciej A, Sumara A, Laitinen T, Wróbel TM, Fornal E, Castro M, Kaczor AA. Synthesis, Experimental and Computational Evaluation of SERAAK1 as a 5-HT 2A Receptor Ligand. Molecules 2025; 30:2165. [PMID: 40430337 DOI: 10.3390/molecules30102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/28/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Many drug discovery efforts have identified potentially promising molecules; however, a common limitation of these reports is the lack of further experimental confirmation of pharmacokinetic properties and behavioral effects of discovered compounds. In this study, we aim to address this limitation. Therefore, we build on our previous virtual screening campaign by synthesizing, analyzing in silico, and evaluating experimentally the SERAAK1 compound, which was initially identified as a ligand for 5-HT1A, 5-HT2A, and D2 receptors. Through these investigations, we discovered that SERAAK1 binds to the orthosteric pocket of the 5-HT2A receptor in a similar mechanism to that known for marketed antipsychotic medications. Molecular dynamics simulations revealed that the SERAAK1 compound remains stable in the orthosteric binding pocket of the 5-HT2A receptor. The determination of the ADMET parameters indicated the directions for further optimization of the compounds. In vivo studies demonstrated the anxiolytic and antidepressant properties of the SERAAK1 compound.
Collapse
Affiliation(s)
- Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20093 Lublin, Poland
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20093 Lublin, Poland
| | - Michał K Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20093 Lublin, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b St., 20-090 Lublin, Poland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20093 Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b St., 20-090 Lublin, Poland
| | - Marián Castro
- Department of Pharmacology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda de Barcelona, 15782 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
2
|
Yamali C, Nenni M, Sakarya MT, Kaplan HA. Pharmaceutical Studies on Piperazine-based Compounds Targeting Serotonin Receptors and Serotonin Reuptake Transporters. Mini Rev Med Chem 2025; 25:58-75. [PMID: 38910275 DOI: 10.2174/0113895575319878240612070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
Depression is a debilitating mental illness that has a significant impact on an individual's psychological, social, and physical life. Multiple factors, such as genetic factors and abnormalities in neurotransmitter levels, contribute to the development of depression. Monoamine oxidase inhibitors, tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), serotoninnoradrenaline reuptake inhibitors, and atypical and new-generation antidepressants are well-known drug classes. SSRIs are the commonly prescribed antidepressant medications in the clinic. Genetic variations impacting serotonergic activity in people can influence susceptibility to diseases and response to antidepressant therapy. Gene polymorphisms related to 5-hydroxytryptamine (5-HT) signaling and subtypes of 5-HT receptors may play a role in the development of depression and the response to antidepressants. SSRIs binding to 5-HT reuptake transporters help relieve depression symptoms. Research has been conducted to identify a biomarker for detecting depressive disorders to identify new treatment targets and maybe offer novel therapy approaches. The pharmacological potentials of the piperazine-based compounds led researchers to design new piperazine derivatives and to examine their pharmacological activities. Structure-activity relationships indicated that the first aspect is the flexibility in the molecules, where a linker of typically a 2-4 carbon chain joins two aromatic sides, one of which is attached to a piperazine/phenylpiperazine/benzyl piperazine moiety. Newly investigated compounds having a piperazine core show a superior antidepressant effect compared to SSRIs in vitro/in vivo.
Collapse
Affiliation(s)
- Cem Yamali
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Cukurova University, Adana, 01250, Turkey
| | - Merve Nenni
- Department of Analytical Chemistry, Faculty of Pharmacy, Cukurova University, Adana, 01250, Turkey
| | - Mehtap Tugrak Sakarya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey
| | - Hasan Alper Kaplan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Cukurova University, Adana, 01250, Turkey
| |
Collapse
|
3
|
Andreozzi G, Ambrosio MR, Magli E, Maneli G, Severino B, Corvino A, Sparaco R, Perissutti E, Frecentese F, Santagada V, Leśniak A, Bujalska-Zadrożny M, Caliendo G, Formisano P, Fiorino F. Design, Synthesis and Biological Evaluation of Novel N-Arylpiperazines Containing a 4,5-Dihydrothiazole Ring. Pharmaceuticals (Basel) 2023; 16:1483. [PMID: 37895954 PMCID: PMC10609883 DOI: 10.3390/ph16101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Arylpiperazines represent one of the most important classes of 5-HT1AR ligands and have attracted considerable interests for their versatile properties in chemistry and pharmacology, leading to the research of new derivatives that has been focused on the modification of one or more portions of such pharmacophore. An efficient protocol for the synthesis of novel thiazolinylphenyl-piperazines (2a-c) and the corresponding acetylated derivatives was used (3a-c). The new compounds were tested for their functional activity and affinity at 5-HT1A receptors, showing an interesting affinity profile with a Ki value of 412 nM for compound 2b. The cytotoxic activity of novel thiazolinylphenyl-piperazines (2a-c) and corresponding N-acetyl derivatives (3a-c) against human prostate and breast cancer cell lines (LNCAP, DU-145 and PC-3, MCF-7, SKBR-3 and MDA-MB231) was investigated according to the procedure described in the literature. The reported data showed a cytotoxic effect for 2a-c and 3a-c compounds (IC50 values ranging from 15 µM to 73 µM) on the investigated cancer cell lines, with no effect on noncancer cells. Future studies will be aimed to investigate the mechanism of action and therapeutic prospects of these new scaffolds.
Collapse
Affiliation(s)
- Giorgia Andreozzi
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Maria Rosaria Ambrosio
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy; (M.R.A.); (P.F.)
| | - Elisa Magli
- Dipartimento di Sanità Pubblica, Università di Napoli Federico II, Via Pansini, 5, 80131, Naples, Italy;
| | - Giovanni Maneli
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Beatrice Severino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Angela Corvino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Rosa Sparaco
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Elisa Perissutti
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Anna Leśniak
- Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Pietro Formisano
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy; (M.R.A.); (P.F.)
- Department of Translational Medicine, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Ferdinando Fiorino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (G.A.); (B.S.); (A.C.); (R.S.); (E.P.); (F.F.); (V.S.); (G.C.)
| |
Collapse
|
4
|
Nieoczym D, Banono NS, Stępnik K, Kaczor AA, Szybkowski P, Esguerra CV, Kukula-Koch W, Gawel K. In Silico Analysis, Anticonvulsant Activity, and Toxicity Evaluation of Schisandrin B in Zebrafish Larvae and Mice. Int J Mol Sci 2023; 24:12949. [PMID: 37629132 PMCID: PMC10455331 DOI: 10.3390/ijms241612949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study is to evaluate the anticonvulsant potential of schisandrin B, a main ingredient of Schisandra chinensis extracts. Schisandrin B showed anticonvulsant activity in the zebrafish larva pentylenetetrazole acute seizure assay but did not alter seizure thresholds in the intravenous pentylenetetrazole test in mice. Schisandrin B crosses the blood-brain barrier, which we confirmed in our in silico and in vivo analyses; however, the low level of its unbound fraction in the mouse brain tissue may explain the observed lack of anticonvulsant activity. Molecular docking revealed that the anticonvulsant activity of the compound in larval zebrafish might have been due to its binding to a benzodiazepine site within the GABAA receptor and/or the inhibition of the glutamate NMDA receptor. Although schisandrin B showed a beneficial anticonvulsant effect, toxicological studies revealed that it caused serious developmental impairment in zebrafish larvae, underscoring its teratogenic properties. Further detailed studies are needed to precisely identify the properties, pharmacological effects, and safety of schisandrin B.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/243, 20-031 Lublin, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland;
| | - Przemysław Szybkowski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090 Lublin, Poland;
- Clinical Provincial Hospital No. 2 St. Jadwiga Krolowej in Rzeszow, Lwowska St. 60, 35-301 Rzeszow, Poland
| | - Camila Vicencio Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
5
|
Synthesis, Docking Studies and Pharmacological Evaluation of Serotoninergic Ligands Containing a 5-Norbornene-2-Carboxamide Nucleus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196492. [PMID: 36235029 PMCID: PMC9572521 DOI: 10.3390/molecules27196492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
A new series of 5-norbornene-2-carboxamide derivatives was prepared and their affinities to the 5-HT1A, 5-HT2A, and 5-HT2C receptors were evaluated and compared to a previously synthesized series of derivatives characterized by exo-N-hydroxy-5-norbornene-2,3-dicarboximidenucleus, in order to identify selective ligands for the above-mentioned subtype receptors. Arylpiperazines represents one of the most important classes of 5-HT1AR ligands, and recent research concerning new derivatives has been focused on the modification of one or more portions of such pharmacophore. The combination of structural elements (heterocyclic nucleus, propyl chain and 4-substituted piperazine), known to be critical to the affinity to 5-HT1A receptors, and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that Norbo-4 and Norbo-18 were the most active and promising derivatives for the serotonin receptor considered in this study.
Collapse
|
6
|
Kondej M, Wróbel TM, Targowska-Duda KM, Martínez AL, Koszła O, Stępnicki P, Zięba A, Paz A, Wronikowska-Denysiuk O, Loza MI, Castro M, Kaczor AA. Multi-target derivatives of D2AAK1 as potential antipsychotics - the effect of the substitution in the indole moiety. ChemMedChem 2022; 17:e202200238. [PMID: 35610178 DOI: 10.1002/cmdc.202200238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex disease which is best treated with multi-target drugs, such as atypical antipsychotics. Previously, using structure-based virtual screening we found a virtual hit D2AAK1 with nanomolar affinity to dopamine and serotonin receptors important in schizophrenia pharmacotherapy. As a part of optimization campaign of D2AAK1 we obtained its 17 derivatives also displaying a multi-target profile. Selected compounds were tested against off-targets in schizophrenia, i.e. histamine H 1 receptor and muscarinic M 1 receptor and did not display considerable affinity to these receptors. Two most promising compounds were subjected to behavioral studies. These compounds decreased amphetamine-induced hyperactivity in mice which indicates their antipsychotic potential. The compounds did not interfere with the memory consolidation in mice as determined in the passive avoidance test. The favorable pharmacological profile of the compounds was rationalized using molecular modeling.
Collapse
Affiliation(s)
- Magda Kondej
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | - Tomasz M Wróbel
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | | | - Antón Leandro Martínez
- University of Santiago de Compostela: Universidade de Santiago de Compostela, Department of Pharmacology, SPAIN
| | - Oliwia Koszła
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | - Piotr Stępnicki
- Medical University of Lublin Main Library: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | - Agata Zięba
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | - Alba Paz
- University of Santiago de Compostela: Universidade de Santiago de Compostela, Department of Pharmacology, POLAND
| | - Olga Wronikowska-Denysiuk
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Independent Laboratory of Behavioral Studies, POLAND
| | - Maria I Loza
- University of Santiago de Compostela: Universidade de Santiago de Compostela, Department of Pharmacology, SPAIN
| | - Marián Castro
- University of Santiago de Compostela: Universidade de Santiago de Compostela, Department of Pharmacology, SPAIN
| | - Agnieszka Anna Kaczor
- Medical University of Lublin, Department of Synthesis and Chemical Technology of Pharmaceutical Substances, 4A Chodzki St, 20093, Lublin, POLAND
| |
Collapse
|
7
|
Kumar RR, Sahu B, Pathania S, Singh PK, Akhtar MJ, Kumar B. Piperazine, a Key Substructure for Antidepressants: Its Role in Developments and Structure-Activity Relationships. ChemMedChem 2021; 16:1878-1901. [PMID: 33751807 DOI: 10.1002/cmdc.202100045] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 01/21/2023]
Abstract
Depression is the single largest contributor to global disability with a huge economic and social burden on the world. There are a number of antidepressant drugs on the market, but treatment-resistant depression and relapse of depression in a large number of patients have increased problems for clinicians. One peculiarity observed in most of the marketed antidepressants is the presence of a piperazine substructure. Although piperazine is also used in the optimization of other pharmacological agents, it is almost extensively used for the development of novel antidepressants. One common understanding is that this is due to its favorable CNS pharmacokinetic profile; however, in the case of antidepressants, piperazine plays a much bigger role and is involved in specific binding conformations of these agents. Therefore, in this review, a critical analysis of the significance of the piperazine moiety in the development of antidepressants has been performed. An overview of current developments in the designing and synthesis of piperazine-based antidepressants (2015 onwards) along with SAR studies is also provided. The various piperazine-based therapeutic agents in early- or late-phase human testing for depression are also discussed. The preclinical compounds discussed in this review will help researchers understand how piperazine actually influences the design and development of novel antidepressant compounds. The SAR studies discussed will provide crucial clues about the structural features and optimizations required to enhance the efficacy and potency of piperazine-based antidepressants.
Collapse
Affiliation(s)
- Ravi Ranjan Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhaskar Sahu
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520, Turku, Finland
| | - M Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
8
|
Magli E, Kędzierska E, Kaczor AA, Bielenica A, Severino B, Gibuła-Tarłowska E, Kotlińska JH, Corvino A, Sparaco R, Esposito G, Albrizio S, Perissutti E, Frecentese F, Leśniak A, Bujalska-Zadrożny M, Struga M, Capasso R, Santagada V, Caliendo G, Fiorino F. Synthesis, docking studies, and pharmacological evaluation of 2-hydroxypropyl-4-arylpiperazine derivatives as serotoninergic ligands. Arch Pharm (Weinheim) 2021; 354:e2000414. [PMID: 33543794 DOI: 10.1002/ardp.202000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023]
Abstract
A new series of norbornene and exo-N-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide derivatives was prepared, and their affinities to the 5-HT1A , 5-HT2A , and 5-HT2C receptors were evaluated and compared with a previously synthesized series of derivatives characterized by the same nuclei, to identify selective ligands for the subtype receptors. Arylpiperazines represent one of the most important classes of 5-HT1A R ligands, and the research of new derivatives has been focused on the modification of one or more portions of this pharmacophore. The combination of structural elements (heterocyclic nucleus, hydroxyalkyl chain, and 4-substituted piperazine), known to be critical for the affinity to 5-HT1A receptors, and the proper selection of substituents resulted in compounds with high specificity and affinity toward serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that 3e, 4j, and 4n were the most active and promising derivatives for the serotonin receptor considered in this study.
Collapse
Affiliation(s)
- Elisa Magli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Beatrice Severino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Ewa Gibuła-Tarłowska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland
| | - Jolanta H Kotlińska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland
| | - Angela Corvino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Rosa Sparaco
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Giovanna Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Stefania Albrizio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Elisa Perissutti
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Anna Leśniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Raffaele Capasso
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Ferdinando Fiorino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| |
Collapse
|
9
|
Kondej M, Wróbel TM, Silva AG, Stępnicki P, Koszła O, Kędzierska E, Bartyzel A, Biała G, Matosiuk D, Loza MI, Castro M, Kaczor AA. Synthesis, pharmacological and structural studies of 5-substituted-3-(1-arylmethyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles as multi-target ligands of aminergic GPCRs. Eur J Med Chem 2019; 180:673-689. [DOI: 10.1016/j.ejmech.2019.07.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
|