1
|
Slly AM, Ewes WA, Bayoumi WA, Selim KB. Unveiling the potential anticancer activity of new dihydropyrimidines through dual inhibition of EGFR and TrkA: Design, synthesis, and in silico study. Bioorg Chem 2025; 154:107962. [PMID: 39591690 DOI: 10.1016/j.bioorg.2024.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
A series of designed scaffold of dihydropyrimidine was synthesized as dual tyrosine kinase targets inhibitors using a multicomponent Biginelli reaction which provided a high atom economy in a single pot reaction. Several 1,4-DHPM hybrids were obtained via alkylation with different chloroacetylamine derivatives. All the synthesized derivatives were screened for their antiproliferative efficacy towards various cancer cell lines (HCT-116, PC-3, and MCF-7) and normal cell line WI-38 using MTT assay. The results indicated that compounds 8h and 8i have the most significant inhibitory effect on all evaluated cancer cell lines, displaying IC50 of 3.94-15.78 µM. Also, they demonstrated favorable selectivity towards normal cell lines. Moreover, the most active hybrids 8h and 8i were evaluated for their EGFR and TrkA inhibitory activity. The findings indicated that compound 8h had superior inhibitory activity compared to compound 8i on the targeted kinases, effectively stopping the G1 phase of the MCF-7 cell cycle and encouraging apoptosis. Additionally, the molecular docking studies declared that the most active compounds exhibited a notable binding interaction with the binding site of the target proteins. Furthermore, their physicochemical properties, ADMET profiles, and bioavailability radar plots were predicted and analyzed.
Collapse
Affiliation(s)
- Aya M Slly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Wafaa A Ewes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Bendi A, Bhathiwal AS, Tiwari A, Rao GBD, Afshari M. Precision in stereochemistry: the integral role of catalytic asymmetric Biginelli reaction in crafting enantiomerically pure dihydropyrimidinones. Mol Divers 2024; 28:4441-4466. [PMID: 38539026 DOI: 10.1007/s11030-024-10827-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 12/21/2024]
Abstract
One well-known multicomponent reaction that is helpful in the synthesis of dihydropyrimidinones (DHPMs), important molecules in organic synthesis and medicinal chemistry, is the Biginelli reaction. Because of their wide range of biological activities, DHPMs are regarded as essential chemicals. A great deal of research has been done in the last few decades to find ways to produce enantiomerically pure DHPMs because of their notable and focused target-oriented biological activities. In this reaction, numerous structural variants and catalysts have been employed in a range of solvents to yield an enormous number of Biginelli-type compounds. In the present review, the available catalysts in the literature including ionic liquids, Lewis acids, and organocatalysts for the Biginelli reaction and synthesis of a large number of asymmetric compounds since 2003 are summarized.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, Bangalore, Karnataka, 560064, India.
| | - Anirudh Singh Bhathiwal
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, 122505, India
| | - Aditi Tiwari
- Intertek India, Udyog Vihar, Phase I, Dundahera Village, Gurugram, Haryana, 122001, India
| | - G B Dharma Rao
- Department of Chemistry, Kommuri Pratap Reddy Institute of Technology, Hyderabad, Telangana, 500088, India
| | - Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.
| |
Collapse
|
3
|
Milović E, Matić SL, Katanić Stanković JS, Srećković N, Filipović I, Bradić J, Petrović A, Jakovljević V, Vazquez NB, Janković N. DNA interaction of selected tetrahydropyrimidine and its effects against CCl 4-induced hepatotoxicity in vivo: Part II. Arch Pharm (Weinheim) 2024; 357:e2400409. [PMID: 39188175 DOI: 10.1002/ardp.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Tetrahydropyrimidine (compound A = methyl 4-[4'-(heptyloxy)-3'-methoxyphenyl]-1,6-dimethyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate) was chosen for in vivo studies after exhibiting noteworthy in vitro activity against the K562 and MDA-MB-231 cell lines, with IC50 values of 9.20 ± 0.14 µM and 12.76 ± 1.93 µM, respectively. According to experimental (fluorescence titration, viscosity, and differential scanning calorimetry) results, A interacts with DNA via the minor groove. In vivo, acute oral toxicity studies in Wistar albino rats proved no noticeable symptoms of either toxicity or death during the follow-up period. Genotoxic and antigenotoxic studies at three different concentrations of A (5, 10, and 20 mg/kg of body weight) in Wistar albino rats showed that the dose of 5 mg/kg body weight did not cause DNA damage and had a remarkable DNA protective activity against CCl4-induced DNA damage, with a percentage reduction of 78.7%. It is also important to note that, under the investigated concentrations of A, liver damage is not observed. Considering all experimental outcomes realized under various in vivo investigations (acute oral toxicity, genotoxicity, antigenotoxicity, and biochemical tests), compound A could be a promising candidate for further clinical testing.
Collapse
Affiliation(s)
- Emilija Milović
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Sanja Lj Matić
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Jelena S Katanić Stanković
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Nikola Srećković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ignjat Filipović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Anica Petrović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, University IM Sechenov, First Moscow State Medical University, Moscow, Russia
| | - Natalia Busto Vazquez
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| | - Nenad Janković
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
4
|
Díaz-Fernández M, Algarra M, Calvo-Losada S, Quirante JJ, Sarabia F, Pino-González MS. Diverse Methods with Stereoselective Induction in the Asymmetric Biginelli Reaction. Molecules 2024; 29:3864. [PMID: 39202943 PMCID: PMC11357475 DOI: 10.3390/molecules29163864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The relevance of the asymmetric Biginelli reaction (ABR) has been increased in this century, due to the pharmacological application of its products. This review focuses predominantly on articles published in the period from 2015 to 2024 on asymmetric synthetic advances in the formation of dihydropyrimidinones (DHPMs), dihydropyrimidinethiones (DHPMTs), and related compounds. The relevant bibliography on general processes in the Biginelli reaction and some methods of separation of isomers have also been referenced.
Collapse
Affiliation(s)
- Marcos Díaz-Fernández
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (M.D.-F.); (F.S.)
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (S.C.-L.); (J.-J.Q.)
| | - Manuel Algarra
- Department of Science, INAMAT2-Institute for Advanced Materials and Mathematics, Public University of Navarra, 31006 Pamplona, Spain;
| | - Saturnino Calvo-Losada
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (S.C.-L.); (J.-J.Q.)
| | - José-Joaquín Quirante
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (S.C.-L.); (J.-J.Q.)
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (M.D.-F.); (F.S.)
| | - María-Soledad Pino-González
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (M.D.-F.); (F.S.)
| |
Collapse
|
5
|
Zhang T, Shi XL, Hu Q, Gong H, Shi K, Li Z. Ultrahigh-Performance Fiber-Supported Iron-Based Ionic Liquid for Synthesizing 3,4-Dihydropyrimidin-2-(1 H)-ones in a Cleaner Manner. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9579-9591. [PMID: 38657205 DOI: 10.1021/acs.langmuir.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein, a fiber-supported iron-based ionic liquid as a type of fibrous catalyst has been developed for the synthesis of bioactive 3,4-dihydropyrimidin-2-(1H)-ones (DHPMs) via three-component Biginelli reactions in a cleaner manner. The described fibrous catalyst was obtained from the commercially available polyetheretherketone (PEEK) fiber by postfunctionalization processes and was characterized and analyzed in detail by means of diversified technologies. Furthermore, the fiber-supported iron-based ionic liquids could mediate the classical three-component Biginelli reactions to proceed smoothly to gain a variety of substituted DHPMs with yields of up to 99%. The superior catalytic activities of the fibrous catalyst were ascribed to the quasi-homogeneous medium by ionic liquids generated in the surface layer of the PEEK fiber, which could afford an appropriate reaction zone and could further be available for the aggregation of substrates to facilitate the three-component reaction. Notably, the fibrous catalyst is available for recycling over 10 runs just by a pair of tweezers, and the operational procedure was capable of enlarging the catalytic system to the gram-scale without any performance degradation, which provided a cleaner manner to take advantage of the iron-based catalyst in organic synthesis with potential industrialization prospects.
Collapse
Affiliation(s)
- Tian Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Xian-Lei Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Qianqian Hu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Honghui Gong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Keren Shi
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Zhenhua Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| |
Collapse
|