1
|
Jo Y, Sim HI, Yun B, Park Y, Jin HS. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2. Exp Mol Med 2024; 56:2113-2126. [PMID: 39349829 PMCID: PMC11541569 DOI: 10.1038/s12276-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.
Collapse
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Biały S, Iwaszko M, Świerkot J, Kolossa K, Wielińska J, Jeka S, Bogunia-Kubik K. Genetic variability of three common NK and γδ T cell receptor genes (FCγ3R, NCR3, and DNAM-1) and their role in Polish patients with rheumatoid arthritis and ankylosing spondylitis. Immunol Res 2024; 72:614-625. [PMID: 38714580 PMCID: PMC11347466 DOI: 10.1007/s12026-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/29/2024] [Indexed: 05/10/2024]
Abstract
Various lymphocyte subpopulations, including NK cells as well as γδ T cells, have been considered an important element in the pathogenesis of autoimmune, inflammatory, rheumatic diseases, such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). The aim of this study was to assess the potential role of polymorphic variations in the genes coding for three NK and γδ T cell receptors: NCR3, FCγR3A, and DNAM-1 (rs1052248, rs396991, and rs763361, respectively) in the disease susceptibility and the efficacy of treatment with TNF inhibitors. The study included 461 patients with RA, 168 patients with AS, and 235 voluntary blood donors as controls. The NCR3 rs1052248 AA homozygosity prevailed in RA in patients lacking rheumatoid factor (p = 0.044) as well as in those who manifested the disease at a younger age (p = 0.005) and had higher CRP levels after 12 weeks of anti-TNF therapy (p = 0.021). The FCγR3A rs396991 polymorphism was associated with pain visual analogue scale (VAS) values before the initiation of anti-TNF treatment. Lower VAS values were observed in the GG homozygous RA patients (p = 0.024) and in AS patients with the TT genotype (p = 0.012). Moreover, AS heterozygous patients with the TG genotype presented higher CRP levels in the 12th week of anti-TNF treatment (p = 0.021). The findings suggest that the NCR3 rs1052248 AA homozygosity may have an adverse effect on RA, while the T allele potentially plays a protective role in the development of AS. Moreover, the rs1052248 T allele and TT genotype appear to have a favorable impact on the response to anti-TNF therapy in RA patients.
Collapse
MESH Headings
- Humans
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/drug therapy
- Male
- Female
- Spondylitis, Ankylosing/genetics
- Spondylitis, Ankylosing/immunology
- Adult
- Middle Aged
- Poland
- Antigens, Differentiation, T-Lymphocyte/genetics
- Genetic Predisposition to Disease
- Polymorphism, Single Nucleotide
- Receptors, IgG/genetics
- Genotype
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Killer Cells, Natural/immunology
- Alleles
- Gene Frequency
- Aged
- T Lineage-Specific Activation Antigen 1
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Milena Iwaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kolossa
- Clinical Department of Rheumatology and Connective Tissue Diseases, Jan Biziel Hospital University, No. 2, Bydgoszcz, Poland
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sławomir Jeka
- Clinical Department of Rheumatology and Connective Tissue Diseases, Jan Biziel Hospital University, No. 2, Bydgoszcz, Poland
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
3
|
Vázquez-Reyes A, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Ayón-Pérez MF, Gutiérrez-Silerio GY, Del Toro-Arreola S, Alejandre-González AG, Ortiz-Martínez L, Haramati J, Tovar-Ocampo IC, Victorio-De los Santos M, Gutiérrez-Franco J. Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population. Curr Issues Mol Biol 2024; 46:2819-2826. [PMID: 38666906 PMCID: PMC11048971 DOI: 10.3390/cimb46040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNAM-1 (CD226) is an activating receptor expressed in CD8+ T cells, NK cells, and monocytes. It has been reported that two SNPs in the DNAM-1 gene, rs763361 C>T and rs727088 G>A, have been associated with different autoimmune diseases; however, the role of DNAM-1 in ankylosing spondylitis has been less studied. For this reason, we focused on the study of these two SNPs in association with ankylosing spondylitis. For this, 34 patients and 70 controls were analyzed using endpoint PCR with allele-specific primers. Our results suggest that rs763361 C>T is involved as a possible protective factor under the CT co-dominant model (OR = 0.34, 95% CI = 0.13-0.88, p = 0.022) and the CT + TT dominant model (OR = 0.39, 95% CI = 0.17-0.90, p = 0.025), while rs727088 G>A did not show an association with the disease in any of the inheritance models. When analyzing the relationships of the haplotypes, we found that the T + A haplotype (OR = 0.31, 95% CI = 0.13-0.73, p = 0.0083) is a protective factor for developing the disease. In conclusion, the CT and CT + TT variants of rs763361 C>T and the T + A haplotype were considered as protective factors for developing ankylosing spondylitis.
Collapse
Affiliation(s)
- Alejandro Vázquez-Reyes
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Miriam Fabiola Ayón-Pérez
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Gloria Yareli Gutiérrez-Silerio
- Laboratorio de Endocrinología y Nutrición, Departamento de Investigación Biomédica, Faculta de Medicina, Universidad Autónoma de Querétaro, Querétaro 76140, Querétaro, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Alan Guillermo Alejandre-González
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Liliana Ortiz-Martínez
- Clínica de Reumatología, Servicio de Medicina Interna, Instituto Mexicano del Seguro Social (IMSS), Tepic 63000, Nayarit, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Iris Celeste Tovar-Ocampo
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Marcelo Victorio-De los Santos
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Jorge Gutiérrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| |
Collapse
|
4
|
Murata R, Kinoshita S, Matsuda K, Kawaguchi A, Shibuya A, Shibuya K. G307S DNAM-1 Mutation Exacerbates Autoimmune Encephalomyelitis via Enhancing CD4 + T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2304-2312. [PMID: 36323412 DOI: 10.4049/jimmunol.2200608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 02/17/2024]
Abstract
Although rs763361, which causes a nonsynonymous glycine-to-serine mutation at residue 307 (G307S mutation) of the DNAX accessory molecule-1 (DNAM-1) immunoreceptor, is a single-nucleotide polymorphism associated with autoimmune disease susceptibility, little is known about how the single-nucleotide polymorphism is involved in pathogenesis. In this study, we established human CD4+ T cell transfectants stably expressing wild-type (WT) or G307S DNAM-1 and showed that the costimulatory signal from G307S DNAM-1 induced greater proinflammatory cytokine production and cell proliferation than that from wild-type DNAM-1. The G307S mutation also enhanced the recruitment of the tyrosine kinase Lck and augmented p-Tyr322 of DNAM-1. We also established a mouse myelin Ag-specific CD4+ T cell transfectant stably expressing the chimeric DNAM-1 (chDNAM-1) consisting of the extracellular, transmembrane, and a part of intracellular regions of mouse DNAM-1 (residues 1-285) fused with the part of the intracellular region (residues 286-336) of human WT or G307S chDNAM-1. Adoptive transfer of the mouse T cell transfectant expressing the G307S chDNAM-1 into mice exacerbated experimental autoimmune encephalomyelitis compared with the transfer of cells expressing the WT chDNAM-1. These findings suggest that rs763361 is a gain-of-function mutation that enhances DNAM-1-mediated costimulatory signaling for proinflammatory responses.
Collapse
Affiliation(s)
- Rikito Murata
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Shota Kinoshita
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Kenshiro Matsuda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; and
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan;
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan;
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Hussein BA, Hallner A, Wennström L, Brune M, Martner A, Hellstrand K, Bernson E, Thorén FB. Impact of NK Cell Activating Receptor Gene Variants on Receptor Expression and Outcome of Immunotherapy in Acute Myeloid Leukemia. Front Immunol 2021; 12:796072. [PMID: 34956230 PMCID: PMC8695486 DOI: 10.3389/fimmu.2021.796072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Natural killer cells are important effector cells in the immune response against myeloid malignancies. Previous studies show that the expression of activating NK cell receptors is pivotal for efficient recognition of blasts from patients with acute myeloid leukemia (AML) and that high expression levels impact favorably on patient survival. This study investigated the potential impact of activating receptor gene variants on NK cell receptor expression and survival in a cohort of AML patients receiving relapse-preventive immunotherapy with histamine dihydrochloride and low-dose IL-2 (HDC/IL-2). Patients harboring the G allele of rs1049174 in the KLRK1 gene encoding NKG2D showed high expression of NKG2D by CD56bright NK cells and a favorable clinical outcome in terms of overall survival. For DNAM-1, high therapy-induced receptor expression entailed improved survival, while patients with high DNAM-1 expression before immunotherapy associated with unfavorable clinical outcome. The previously reported SNPs in NCR3 encoding NKp30, which purportedly influence mRNA splicing into isoforms with discrete functions, did not affect outcome in this study. Our results imply that variations in genes encoding activating NK cell receptors determine receptor expression and clinical outcome in AML immunotherapy.
Collapse
Affiliation(s)
- Brwa Ali Hussein
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Hallner
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Wennström
- Department of Hematology, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mats Brune
- Department of Hematology, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Šunina M, Alnek K, Kisand K, Uibo R. Human CD4
+
and CD8
+
T lymphocyte subpopulations have significantly different surface expression patterns of CD226 and TIGIT molecules. Scand J Immunol 2021; 94:e13089. [DOI: 10.1111/sji.13089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Marina Šunina
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Kristi Alnek
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Kai Kisand
- Department of Biomedicine Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Raivo Uibo
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| |
Collapse
|
7
|
Huang Z, Qi G, Miller JS, Zheng SG. CD226: An Emerging Role in Immunologic Diseases. Front Cell Dev Biol 2020; 8:564. [PMID: 32850777 PMCID: PMC7396508 DOI: 10.3389/fcell.2020.00564] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
CD226, a member of the immunoglobulin superfamily, is a functional protein initially expressed on natural killer and T cells. In recent years, the function of CD226 has been increasingly realized and researched. Accumulating evidence shows that CD226 is closely related to the occurrence of autoimmune diseases, infectious diseases, and tumors. Because of the CD226’s increasing importance, the author herein discusses the structure, mechanism of action, and role of CD226 in various pathophysiological environments, allowing for further understanding of the function of CD226 and providing the basis for further research in related diseases.
Collapse
Affiliation(s)
- Zhiyi Huang
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Guangyin Qi
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Joseph S Miller
- Ohio University Heritage College of Osteopathic Medicine, Dublin, OH, United States
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
8
|
Redlberger-Fritz M, Vietzen H, Puchhammer-Stöckl E. Association of Severe Influenza Virus Infections With CD226 (DNAM-1) Variants. J Infect Dis 2020; 220:1162-1165. [PMID: 31114873 DOI: 10.1093/infdis/jiz270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/20/2019] [Indexed: 11/14/2022] Open
Abstract
Natural killer (NK)-cell response against influenza viruses partly depends on expression of CD112, a ligand for NK-cell receptor CD226 (DNAM-1). We analyzed whether particular CD226 variants were associated with influenza disease severity. Comparison between 145 patients hospitalized with severe influenza at intensive care units (ICU) with 139 matched influenza-positive outpatients showed that presence of the rs763362 G allele (GG, AG) was associated with occurrence of severe influenza infections (P = .0076). Also, a higher frequency of rs727088 G and rs763361 T alleles was observed in the ICU group. Thus, CD226 variants may contribute to the severity of influenza virus disease.
Collapse
Affiliation(s)
| | - Hannes Vietzen
- Center for Virology, Medical University, Vienna, Austria
| | | |
Collapse
|
9
|
Deuss FA, Watson GM, Goodall KJ, Leece I, Chatterjee S, Fu Z, Thaysen-Andersen M, Andrews DM, Rossjohn J, Berry R. Structural basis for the recognition of nectin-like protein-5 by the human-activating immune receptor, DNAM-1. J Biol Chem 2019; 294:12534-12546. [PMID: 31253644 DOI: 10.1074/jbc.ra119.009261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/27/2019] [Indexed: 11/06/2022] Open
Abstract
Nectin and nectin-like (Necl) adhesion molecules are broadly overexpressed in a wide range of cancers. By binding to these adhesion molecules, the immunoreceptors DNAX accessory molecule-1 (DNAM-1), CD96 molecule (CD96), and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) play a crucial role in regulating the anticancer activities of immune effector cells. However, within this axis, it remains unclear how DNAM-1 recognizes its cognate ligands. Here, we determined the structure of human DNAM-1 in complex with nectin-like protein-5 (Necl-5) at 2.8 Å resolution. Unexpectedly, we found that the two extracellular domains (D1-D2) of DNAM-1 adopt an unconventional "collapsed" arrangement that is markedly distinct from those in other immunoglobulin-based immunoreceptors. The DNAM-1/Necl-5 interaction was underpinned by conserved lock-and-key motifs located within their respective D1 domains, but also included a distinct interface derived from DNAM-1 D2. Mutation of the signature DNAM-1 "key" motif within the D1 domain attenuated Necl-5 binding and natural killer cell-mediated cytotoxicity. Altogether, our results have implications for understanding the binding mode of an immune receptor family that is emerging as a viable candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Felix A Deuss
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Gabrielle M Watson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Katharine J Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | - Isobel Leece
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, New South Wales 2109, Australia
| | - Zhihui Fu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, New South Wales 2109, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
10
|
Ott M, Avendaño-Guzmán E, Ullrich E, Dreyer C, Strauss J, Harden M, Schön M, Schön MP, Bernhardt G, Stadelmann C, Wegner C, Brück W, Nessler S. Laquinimod, a prototypic quinoline-3-carboxamide and aryl hydrocarbon receptor agonist, utilizes a CD155-mediated natural killer/dendritic cell interaction to suppress CNS autoimmunity. J Neuroinflammation 2019; 16:49. [PMID: 30808363 PMCID: PMC6390632 DOI: 10.1186/s12974-019-1437-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Quinoline-3-carboxamides, such as laquinimod, ameliorate CNS autoimmunity in patients and reduce tumor cell metastasis experimentally. Previous studies have focused on the immunomodulatory effect of laquinimod on myeloid cells. The data contained herein suggest that quinoline-3-carboxamides improve the immunomodulatory and anti-tumor effects of NK cells by upregulating the adhesion molecule DNAX accessory molecule-1 (DNAM-1). Methods We explored how NK cell activation by laquinimod inhibits CNS autoimmunity in experimental autoimmune encephalomyelitis (EAE), the most utilized model of MS, and improves immunosurveillance of experimental lung melanoma metastasis. Functional manipulations included in vivo NK and DC depletion experiments and in vitro assays of NK cell function. Clinical, histological, and flow cytometric read-outs were assessed. Results We demonstrate that laquinimod activates natural killer (NK) cells via the aryl hydrocarbon receptor and increases their DNAM-1 cell surface expression. This activation improves the cytotoxicity of NK cells against B16F10 melanoma cells and augments their immunoregulatory functions in EAE by interacting with CD155+ dendritic cells (DC). Noteworthy, the immunosuppressive effect of laquinimod-activated NK cells was due to decreasing MHC class II antigen presentation by DC and not by increasing DC killing. Conclusions This study clarifies how DNAM-1 modifies the bidirectional crosstalk of NK cells with CD155+ DC, which can be exploited to suppress CNS autoimmunity and strengthen tumor surveillance. Electronic supplementary material The online version of this article (10.1186/s12974-019-1437-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Ott
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Erika Avendaño-Guzmán
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Evelyn Ullrich
- LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt am Main, Germany.,Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Carolin Dreyer
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Judith Strauss
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Harden
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Margarete Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen and University of Osnabrück, Göttingen, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Gebäude I11 OE 5240, 30625, Hannover, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Christiane Wegner
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Present Address: Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Zitti B, Bryceson YT. Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev 2018; 42:37-46. [PMID: 30122459 DOI: 10.1016/j.cytogfr.2018.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022]
Abstract
First described 40 years ago, natural killer (NK) cells represent the founding members of the innate lymphoid cell (ILC) family. They were initially defined by their ability to kill cancer cells of hematopoietic origin. More recently, NK cells are recognized not only for their ability to kill infected or malignant cells, but also for mediating cytotoxicity against a range of normal immune cells. They thereby play an important physiological role in controlling immune responses and maintaining homeostasis. Besides cytotoxic activity, NK cells activation is accompanied by secretion of pro-inflammatory cytokines. Hence, NK cells have the potential to act both in driving inflammation and in restricting adaptive immune responses that may otherwise lead to excessive inflammation or even autoimmunity. Here, we highlight how NK cell activity is linked to inflammasome activation and review new molecular insights to the roles of NK cells in inflammation and autoimmunity. Furthermore, in light of new insights to NK cell differentiation and memory, we deliberate on how distinct NK cell subsets may impact immunoregulatory functions. Hypothetically, memory-like or adaptive NK cells could drive NK cell-mediated autoreactive diseases. Together, new findings underscore the complex yet important physiological roles of NK cells in both promoting inflammation and exerting immunoregulation and maintenance of immune homeostasis. Insights raise intriguing questions as to how NK cells themselves maintain self-tolerance.
Collapse
Affiliation(s)
- Beatrice Zitti
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
12
|
Alsahebfosoul F, Rahimpourkoldeh S, Eskandari N, Shaygannejad V, Ganjalikhani Hakemi M, Dabiri A, Jafarnia M, Mirmossayeb O. Gene Expression of CD226 and Its Serum Levels in Patients With Multiple Sclerosis. CASPIAN JOURNAL OF NEUROLOGICAL SCIENCES 2018. [DOI: 10.29252/cjns.4.14.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
13
|
Genetic predictors of systemic sclerosis-associated interstitial lung disease: a review of recent literature. Eur J Hum Genet 2018; 26:765-777. [PMID: 29476163 DOI: 10.1038/s41431-018-0104-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/15/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023] Open
Abstract
The interplay between genetic and environmental factors is likely involved in the pathogenesis of systemic sclerosis (SSc). Interstitial lung disease associated in the context of SSc (SSc-ILD) is associated with significant morbidity, and is the leading cause of death in SSc. The spectrum of SSc-ILD severity is wide, ranging from patients with only limited and inherently stable pulmonary involvement, to those with extensive and progressive pulmonary fibrosis. In order to provide accurate prognostic information for patients, and to initiate appropriate monitoring and treatment regimens, the ability to identify patients at risk of developing severe ILD early in the disease course is crucial. Identification of genetic variants involved in disease pathogenesis can not only potentially provide diagnostic/prognostic markers, but can also highlight dysregulated molecular pathways for therapeutic targeting. A number of genetic associations have been established for susceptibility to SSc, but far fewer studies have investigated genetic susceptibility to SSc-ILD specifically. In this review we present a summary of the studies assessing genetic associations with SSc-ILD.
Collapse
|
14
|
Mosaad YM, El-Toraby EE, Tawhid ZM, Abdelsalam AI, Enin AF, Hasson AM, Shafeek GM. Association between CD226 polymorphism and soluble levels in rheumatoid arthritis: Relationship with clinical activity. Immunol Invest 2018; 47:264-278. [PMID: 29319370 DOI: 10.1080/08820139.2018.1423570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To study the relation between CD226 rs763361 gene polymorphism and CD226 serum level and to evaluate their role in susceptibility and disease activity of RA in a cohort of Egyptian individuals. METHODS The serum level of CD226 was measured using a suitable ELISA kit and the CD226 rs763361 gene polymorphism was typed by PCR-RFLP for 112 RA patients and 100 healthy controls. RESULTS Significant association with RA was found with CD226 T allele (OR (95%CI) = 1.6 (1.04-2.4), P = 0.032), and higher CD226 serum level (P = 0.001). Higher CD226 levels were associated with higher ESR values (P = 0.035), positive CRP (0.048), increased number of tender joints (P = 0.045), and higher DAS score (P = 0.035). Serum CD226 is an independent risk factor for the prediction of RA (P = 0.001). No correlations were found between the serum level of CD226 and different CD226 genotypes and also between them and RA activity grades. CONCLUSION The CD226 T allele may be susceptibility risk factors for the development of RA and the higher serum level of CD226 may be involved in the pathogenesis of RA in Egyptian patients. The serum level of CD226 and not CD226 genotypes could be considered as an independent risk factor for the prediction of RA within healthy individuals and also for RA disease activity.
Collapse
Affiliation(s)
- Youssef M Mosaad
- a Clinical Pathology Department, Mansoura Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ehab Es El-Toraby
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ziyad Me Tawhid
- a Clinical Pathology Department, Mansoura Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Adel I Abdelsalam
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Asmaa F Enin
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Amany Me Hasson
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ghada M Shafeek
- c Clinical Pathology Department , Mansoura General Hospital, Ministry of health , Egypt
| |
Collapse
|
15
|
Vietzen H, Pollak K, Honsig C, Jaksch P, Puchhammer-Stöckl E. NKG2C Deletion Is a Risk Factor for Human Cytomegalovirus Viremia and Disease After Lung Transplantation. J Infect Dis 2017; 217:802-806. [DOI: 10.1093/infdis/jix608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/04/2017] [Indexed: 01/25/2023] Open
|
16
|
Reply to Liu et al.: Haplotype matters: CD226 polymorphism as a potential trigger for impaired immune regulation in multiple sclerosis. Proc Natl Acad Sci U S A 2017; 114:E908-E909. [PMID: 28137888 DOI: 10.1073/pnas.1619059114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
DNA methylation-based variation between human populations. Mol Genet Genomics 2016; 292:5-35. [PMID: 27815639 DOI: 10.1007/s00438-016-1264-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.
Collapse
|
18
|
Teruel M, Alarcón-Riquelme ME. The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. J Autoimmun 2016; 74:161-175. [PMID: 27522116 DOI: 10.1016/j.jaut.2016.08.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
The genome-wide association study is a free-hypothesis approach based on screening of thousands or even millions of genetic variants distributed throughout the whole human genome in relation to a phenotype. The relevant role of the genome-wide association studies in the last decade is undisputed because it has permitted to elucidate multiple risk genetic factors associated with the susceptibility to several human complex diseases. Regarding systemic lupus erythematosus (SLE) this approach has allowed to identify more than 60 risk loci for SLE susceptibility across populations to date, increasing our understanding on the pathogenesis of this disease. We present the latest findings in the genetic of SLE across populations using genome-wide approaches. These studies revealed that most of the genetic risk is shared across borders and ethnicities. Finally, we focus on describing the most important risk loci for SLE attempting to cover the genetic findings in relation to functional polymorphisms, such as missense single nucleotide polymorphisms (SNPs) or regulatory variants involved in the development of the disease. The functional studies try to identify the causality of some GWAS-associated variants, many of which fall in non-coding regions of the genome, suggesting a regulatory role. Many loci show an environmental interaction, another aspect revealed by the studies of epigenetic modifications and those associated with genetic variants. Finally, new-generation sequencing technologies can open other paths in the research on SLE genetics, the role of rare variants and the detailed identification of causal regulatory variation. The clinical relevance of the genetic factors will be shown when we are able to use them or in combination with other molecular measurements to re-classify a heterogeneous disease such as SLE.
Collapse
Affiliation(s)
- Maria Teruel
- Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18016, Spain.
| | - Marta E Alarcón-Riquelme
- Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18016, Spain; Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 67, Sweden.
| |
Collapse
|
19
|
Myrthianou E, Zervou MI, Budu-Aggrey A, Eliopoulos E, Kardassis D, Boumpas DT, Kougkas N, Barton A, Sidiropoulos P, Goulielmos GN. Investigation of the genetic overlap between rheumatoid arthritis and psoriatic arthritis in a Greek population. Scand J Rheumatol 2016; 46:180-186. [PMID: 27440135 DOI: 10.1080/03009742.2016.1199734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Several rheumatoid arthritis (RA) susceptibility loci have also been found to be associated with psoriatic arthritis (PsA), demonstrating that there is a degree of genetic overlap between various autoimmune diseases. We sought to investigate whether single nucleotide polymorphisms (SNPs) mapping to previously reported RA and/or PsA susceptibility loci, including PLCL2, CCL21, REL, STAT4, CD226, PTPN22, and TYK2, are associated with risk for the two diseases in a genetically homogeneous Greek population. METHOD This study included 392 RA patients, 126 PsA patients, and 521 healthy age- and sex-matched controls from Greece. Genotyping of the SNPs was performed with Taqman primer/probe sets. Bioinformatic analysis was performed using BlastP, PyMOL, and Maestro and Desmond. RESULTS A significant association was detected between the GC genotype of rs34536443 (TYK2) in both the PsA and RA cohorts. The C allele of this SNP was associated with PsA only. Evidence for association with PsA was also found for the GG genotype and G allele of the rs10181656 SNP of STAT4. The TC genotype of the rs763361 SNP of CD226 was associated with PsA only. CONCLUSIONS Genetic overlap between PsA and RA was detected for the rs34536443 SNP of the TYK2 gene within a Greek population. An association of STAT4 (rs10181656) with PsA was confirmed whereas CD226 (rs763361) was associated with PsA but not with RA, in contrast to previous reports. The different findings of this study compared to previous ones highlights the importance of comparative studies that include various ethnic or racial populations.
Collapse
Affiliation(s)
- E Myrthianou
- a Laboratory of Molecular Medicine and Human Genetics, Department of Internal Medicine , School of Medicine, University of Crete , Heraklion , Greece
| | - M I Zervou
- a Laboratory of Molecular Medicine and Human Genetics, Department of Internal Medicine , School of Medicine, University of Crete , Heraklion , Greece
| | - A Budu-Aggrey
- b Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research , Institute for Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester , Manchester , UK.,c NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre , Manchester , UK
| | - E Eliopoulos
- d Laboratory of Genetics, Department of Biotechnology , Agricultural University of Athens , Athens , Greece
| | - D Kardassis
- e Department of Biochemistry , School of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology of Crete , Heraklion , Greece.,f Institute of Molecular Biology and Biotechnology, FORTH , Heraklion , Crete , Greece
| | - D T Boumpas
- f Institute of Molecular Biology and Biotechnology, FORTH , Heraklion , Crete , Greece.,g Faculty of Medicine , University of Athens , Athens , Greece
| | - N Kougkas
- h Department of Rheumatology, Clinical Immunology and Allergy, Faculty of Medicine , University of Crete , Heraklion , Greece
| | - A Barton
- b Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research , Institute for Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester , Manchester , UK.,c NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre , Manchester , UK.,i The Kellgren Centre for Rheumatology, Central Manchester Foundation Trust, NIHR Manchester Biomedical Research Centre , Manchester , UK
| | - P Sidiropoulos
- h Department of Rheumatology, Clinical Immunology and Allergy, Faculty of Medicine , University of Crete , Heraklion , Greece
| | - G N Goulielmos
- a Laboratory of Molecular Medicine and Human Genetics, Department of Internal Medicine , School of Medicine, University of Crete , Heraklion , Greece
| |
Collapse
|
20
|
Reinards THCM, Albers HM, Brinkman DMC, Kamphuis SSM, van Rossum MAJ, Girschick HJ, Wouters C, Hoppenreijs EPAH, Saurenmann RK, Hinks A, Ellis JA, Bakker E, Verduijn W, Slagboom P, Huizinga TWJ, Toes REM, Houwing-Duistermaat JJ, ten Cate R, Schilham MW. CD226 (DNAM-1) is associated with susceptibility to juvenile idiopathic arthritis. Ann Rheum Dis 2015; 74:2193-8. [PMID: 25057181 DOI: 10.1136/annrheumdis-2013-205138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/11/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Juvenile idiopathic arthritis (JIA) is considered a complex genetic autoimmune disease. We investigated the association of genetic variants previously implicated in JIA, autoimmunity and/or immunoregulation, with susceptibility to JIA. METHODS A genetic association study was performed in 639 JIA patients and 1613 healthy controls of northwest European descent. Ninety-three single nucleotide polymorphisms (SNP) were genotyped in a candidate gene approach. Results of the entire JIA patient group (all subtypes) were compared with results obtained, alternatively, with a clinically homogeneous patient group including only oligoarticular and rheumatoid factor (RF) negative polyarticular JIA patients (n=493). Meta-analyses were performed for all SNPs that have been typed in other Caucasian JIA cohorts before. RESULTS SNPs in or near PTPN22, VTCN1, the IL2-IL21 region, ANKRD55 and TNFA were confirmed to be associated with JIA (p<0.05), strengthening the evidence for involvement of these genes in JIA. In the majority of these replicated SNPs, effect sizes were larger when analysing a homogeneous patient cohort than when analysing all subtypes. We identified two novel associations with oligoarticular and RF-negative polyarticular JIA: CD226 rs763361 (OR 1.30, 95% CI 1.12 to 1.51, p=0.0006) and CD28 rs1980422 (OR 1.29, 95% CI 1.07 to 1.55, p=0.008). Meta-analyses including reported studies confirmed the association of both SNPs with susceptibility to JIA (OR 1.16, p=0.001 and OR 1.18, p=0.001, for rs763361 and rs1980422, respectively). CONCLUSIONS The CD226 gene has been identified as novel association with JIA, and a SNP near CD28 as a suggestive association. Both genes are probable candidate risk factors, since they are involved in costimulation of T cells.
Collapse
Affiliation(s)
- T H C M Reinards
- Department of Pediatrics/Pediatric Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - H M Albers
- Department of Pediatrics/Pediatric Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - D M C Brinkman
- Department of Pediatrics/Pediatric Rheumatology, Rijnland Hospital, Leiderdorp, The Netherlands
| | - S S M Kamphuis
- Department of Pediatrics/Pediatric Rheumatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M A J van Rossum
- Department of Pediatrics/Pediatric Rheumatology, Academic Medical Centre/Emma Children's Hospital and Reade (Jan van Breemen location), Amsterdam, The Netherlands
| | - H J Girschick
- Vivantes Children's Hospital, Berlin-Friedrichshain, Germany
| | - C Wouters
- University Hospital Gasthuisberg, Leuven, Belgium
| | - E P A H Hoppenreijs
- Department of Pediatrics/Pediatric Rheumatology, St Maartenskliniek and Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - R K Saurenmann
- Zürich University Children's Hospital, Zürich, Switzerland
| | - A Hinks
- Arthritis Research UK Epidemiology Unit, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - J A Ellis
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | - E Bakker
- Centre for Human and Clinical Genetics/Laboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, The Netherlands
| | - W Verduijn
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - P Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - T W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - R ten Cate
- Department of Pediatrics/Pediatric Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - M W Schilham
- Department of Pediatrics/Laboratory for Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Coit P, Ognenovski M, Gensterblum E, Maksimowicz-McKinnon K, Wren JD, Sawalha AH. Ethnicity-specific epigenetic variation in naïve CD4+ T cells and the susceptibility to autoimmunity. Epigenetics Chromatin 2015; 8:49. [PMID: 26609326 PMCID: PMC4659164 DOI: 10.1186/s13072-015-0037-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/14/2015] [Indexed: 02/08/2023] Open
Abstract
Background Genetic and epigenetic variability contributes to the susceptibility and pathogenesis of autoimmune diseases. T cells play an important role in several autoimmune conditions, including lupus, which is more common and more severe in people of African descent. To investigate inherent epigenetic differences in T cells between ethnicities, we characterized genome-wide DNA methylation patterns in naïve CD4+ T cells in healthy African-Americans and European-Americans, and then confirmed our findings in lupus patients. Results Impressive ethnicity-specific clustering of DNA methylation profiling in naïve CD4+ T cells was revealed. Hypomethylated loci in healthy African-Americans were significantly enriched in pro-apoptotic and pro-inflammatory genes. We also found hypomethylated genes in African-Americans to be disproportionately related to autoimmune diseases including lupus. We then confirmed that these genes, such as IL32, CD226, CDKN1A, and PTPRN2 were similarly hypomethylated in lupus patients of African-American compared to European-American descent. Using patch DNA methylation and luciferase reporter constructs, we showed that methylation of the IL32 promoter region reduces gene expression in vitro. Importantly, bisulfite DNA sequencing demonstrated that cis-acting genetic variants within and directly disrupting CpG sites account for some ethnicity-specific variability in DNA methylation. Conclusion Ethnicity-specific inherited epigenetic susceptibility loci in CD4+ T cells provide clues to explain differences in the susceptibility to autoimmunity and possibly other T cell-related diseases between populations. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0037-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Coit
- Division of Rheumatology, University of Michigan, 5520 MSRB-1, SPC 5680, 1150 W. Medical Center Drive, Ann Arbor, MI 48109 USA
| | - Mikhail Ognenovski
- Division of Rheumatology, University of Michigan, 5520 MSRB-1, SPC 5680, 1150 W. Medical Center Drive, Ann Arbor, MI 48109 USA
| | - Elizabeth Gensterblum
- Division of Rheumatology, University of Michigan, 5520 MSRB-1, SPC 5680, 1150 W. Medical Center Drive, Ann Arbor, MI 48109 USA
| | | | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th St, MS 53, Oklahoma City, OK 73104 USA ; Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, 1100 N Lindsay Ave, Oklahoma City, OK 73104 USA
| | - Amr H Sawalha
- Division of Rheumatology, University of Michigan, 5520 MSRB-1, SPC 5680, 1150 W. Medical Center Drive, Ann Arbor, MI 48109 USA ; Center for Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, #2017, Ann Arbor, MI 48109 USA
| |
Collapse
|
22
|
Cyclic AMP-Responsive Element Modulator α Polymorphisms Are Potential Genetic Risks for Systemic Lupus Erythematosus. J Immunol Res 2015; 2015:906086. [PMID: 26601115 PMCID: PMC4639656 DOI: 10.1155/2015/906086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/23/2015] [Accepted: 10/05/2015] [Indexed: 12/26/2022] Open
Abstract
To investigate whether the cyclic AMP-responsive element modulator α (CREMα) polymorphisms are novel susceptibility factors for systemic lupus erythematosus (SLE), four tag SNPs, rs1057108, rs2295415, rs11592925, and rs1148247, were genotyped in 889 SLE cases and 825 healthy controls. Association analyses were performed on whole dataset or clinical/serologic subsets. Association statistics were calculated by age and sex adjusted logistic regression. The G allele frequencies of rs2295415 and rs1057108 were increased in SLE patients, compared with healthy controls (rs2295415: 21.2% versus 17.8%, OR 1.244, P = 0.019; rs1057108: 30.8% versus 27.7%, OR 1.165, P = 0.049). The haplotype constituted by the two risk alleles “G-G” from rs1057108 and rs2295415 displayed strong association with SLE susceptibility (OR 1.454, P = 0.00056). Following stratification by clinical/serologic features, a suggestive association was observed between rs2295415 and anti-Sm antibodies-positive SLE (OR 1.382, P = 0.044). Interestingly, a potential protective effect of rs2295415 was observed for SLE patients with renal disorder (OR 0.745, P = 0.032). Our data provide first evidence that CREMα SNPs rs2295415 and rs1057108 maybe novel genetic susceptibility factors for SLE. SNP rs2295415 appears to confer higher risk to develop anti-Sm antibodies-positive SLE and may play a protective role against lupus nephritis.
Collapse
|
23
|
Piédavent-Salomon M, Willing A, Engler JB, Steinbach K, Bauer S, Eggert B, Ufer F, Kursawe N, Wehrmann S, Jäger J, Reinhardt S, Friese MA. Multiple sclerosis associated genetic variants of CD226 impair regulatory T cell function. Brain 2015; 138:3263-74. [PMID: 26359290 DOI: 10.1093/brain/awv256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/13/2015] [Indexed: 02/06/2023] Open
Abstract
Recent association studies have linked numerous genetic variants with an increased risk for multiple sclerosis, although their functional relevance remains largely unknown. Here we investigated phenotypical and functional consequences of a genetic variant in the CD226 gene that, among other autoimmune diseases, predisposes to multiple sclerosis. Phenotypically, effector and regulatory CD4(+) memory T cells of healthy individuals carrying the predisposing CD226 genetic variant showed, in comparison to carriers of the protective variant, reduced surface expression of CD226 and an impaired induction of CD226 after stimulation. This haplotype-dependent reduction in CD226 expression on memory T cells was abrogated in patients with multiple sclerosis, as CD226 expression was comparable to healthy risk haplotype carriers irrespective of genetic variant. Functionally, FOXP3-positive regulatory T cells from healthy carriers of the genetic protective variant showed superior suppressive capacity, which was again abrogated in multiple sclerosis patients. Mimicking the phenotype of human CD226 genetic risk variant carriers, regulatory T cells derived from Cd226-deficient mice showed similarly reduced inhibitory activity, eventually resulting in an exacerbated disease course of experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. Therefore, by combining human and mouse analyses we show that CD226 exhibits an important role in the activation of regulatory T cells, with its genetically imposed dysregulation impairing regulatory T cell function.
Collapse
Affiliation(s)
- Melanie Piédavent-Salomon
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Willing
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Steinbach
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Britta Eggert
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Ufer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Kursawe
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Wehrmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Jäger
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Reinhardt
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Qiu ZX, Peng Y, Li WM. CD226 gene polymorphisms are associated with non-small-cell lung cancer in the Chinese Han population. Ther Clin Risk Manag 2015; 11:1259-64. [PMID: 26346602 PMCID: PMC4554428 DOI: 10.2147/tcrm.s90365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The immunoglobulin-like glycoprotein CD226 (DNAX accessory molecule-1) represents receptor-activating cytotoxic T lymphocyte and natural killer cells taking part in tumor surveillance, the pathogenesis of inflammation, and autoimmune disorders. The aim of the present study is to analyze the association between polymorphisms rs763361 and rs727088 in the CD226 gene and their impact on the pathogenesis of non-small-cell lung cancer (NSCLC). Materials and methods Polymerase chain reaction (PCR)-restriction fragment length polymorphisms (RFLP) were used to genotype the single nucleotide polymorphisms (SNPs) rs763361 and rs727088 of the CD226 gene in 302 NSCLC patients and 389 ethnicity matched healthy controls. Results The frequencies of the T allele and TT genotype of rs763361 (T allele odds ratio [OR] 1.42, 95% confidence interval [CI] 1.14–1.77; TT genotype OR 2.73, 95% CI 1.70–4.39), as well as the G allele and GG genotype of rs727088 (G allele OR 1.89, 95% CI 1.50–2.39; GG genotype OR 4.62, 95% CI 2.31–9.20) in the NSCLC patients were significantly higher than that of normal controls, indicating that both of these two SNPs as risk factors were associated with NSCLC (P<0.05). Results of stratified analysis revealed that the polymorphism of rs727088 was associated with lymph node invasion and clinical stage cancer (P<0.05). However, there was no association between SNP rs763361 and clinical characteristics. Conclusion Our results demonstrated that CD226 gene polymorphisms (T allele of rs763361 and G allele of rs727088) as risk factors were associated with NSCLC.
Collapse
Affiliation(s)
- Zhi-Xin Qiu
- Department of Respiratory Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Ying Peng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei-Min Li
- Department of Respiratory Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
25
|
Lempainen J, Laine AP, Hammais A, Toppari J, Simell O, Veijola R, Knip M, Ilonen J. Non-HLA gene effects on the disease process of type 1 diabetes: From HLA susceptibility to overt disease. J Autoimmun 2015; 61:45-53. [PMID: 26074154 DOI: 10.1016/j.jaut.2015.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 01/19/2023]
Abstract
In addition to the HLA region numerous other gene loci have shown association with type 1 diabetes. How these polymorphisms exert their function has not been comprehensively described, however. We assessed the effect of 39 single nucleotide polymorphisms (SNP) on the development of autoantibody positivity, on progression from autoantibody positivity to clinical disease and on the specificity of the antibody initiating the autoimmune process in 521 autoantibody-positive and 989 control children from a follow-up study starting from birth. Interestingly, PTPN2 rs45450798 gene polymorphism was observed to strongly affect the progression rate of beta-cell destruction after the appearance of humoral beta-cell autoimmunity. Moreover, primary autoantigen dependent associations were also observed as effect of the IKZF4-ERBB3 region on the progression rate of β-cell destruction was restricted to children with GAD antibodies as their first autoantibody whereas the effect of the INS rs 689 polymorphism was observed among subjects with insulin as the primary autoantigen. In the whole study cohort, INS rs689, PTPN22 rs2476601 and IFIH1 rs1990760 polymorphisms were associated with the appearance of beta-cell autoantibodies. These findings provide new insights into the role of genetic factors implicated in the pathogenesis of type 1 diabetes. The effect of some of the gene variants is restricted to control the initiation of β-cell autoimmunity whereas others modify the destruction rate of the β-cells. Furthermore, signs of primary autoantigen-related pathways were detected.
Collapse
Affiliation(s)
- Johanna Lempainen
- Immunogenetics Laboratory, University of Turku, Turku, Finland; Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.
| | | | - Anna Hammais
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, University of Oulu, Oulu, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Wu Z, Wu Q, Xu J, Chen S, Sun F, Li P, Bai Y, Zheng W, Chen H, Zhang F, Li Y. HLA-DPB1 variant rs3117242 is associated with anti-neutrophil cytoplasmic antibody-associated vasculitides in a Han Chinese population. Int J Rheum Dis 2015; 20:1009-1015. [PMID: 26014903 DOI: 10.1111/1756-185x.12561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyan Wu
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Qingjun Wu
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Juanjuan Xu
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Si Chen
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Fei Sun
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Ping Li
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Yina Bai
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| | - Yongzhe Li
- Department of Rheumatology and Clinical Immunology; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Key Laboratory of Rheumatology and Clinical Immunology; Ministry of Education; Beijing China
| |
Collapse
|
27
|
Oparina NY, Delgado-Vega AM, Martinez-Bueno M, Magro-Checa C, Fernández C, Castro RO, Pons-Estel BA, D'Alfonso S, Sebastiani GD, Witte T, Lauwerys BR, Endreffy E, Kovács L, Escudero A, López-Pedrera C, Vasconcelos C, da Silva BM, Frostegård J, Truedsson L, Martin J, Raya E, Ortego-Centeno N, de Los Angeles Aguirre M, de Ramón Garrido E, Palma MJC, Alarcon-Riquelme ME, Kozyrev SV. PXK locus in systemic lupus erythematosus: fine mapping and functional analysis reveals novel susceptibility gene ABHD6. Ann Rheum Dis 2015; 74:e14. [PMID: 24534757 DOI: 10.1136/annrheumdis-2013-204909] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To perform fine mapping of the PXK locus associated with systemic lupus erythematosus (SLE) and study functional effects that lead to susceptibility to the disease. METHODS Linkage disequilibrium (LD) mapping was conducted by using 1251 SNPs (single nucleotide polymorphism) covering a 862 kb genomic region on 3p14.3 comprising the PXK locus in 1467 SLE patients and 2377 controls of European origin. Tag SNPs and genotypes imputed with IMPUTE2 were tested for association by using SNPTEST and PLINK. The expression QTLs data included three independent datasets for lymphoblastoid cells of European donors: HapMap3, MuTHER and the cross-platform eQTL catalogue. Correlation analysis of eQTLs was performed using Vassarstats. Alternative splicing for the PXK gene was analysed on mRNA from PBMCs. RESULTS Fine mapping revealed long-range LD (>200 kb) extended over the ABHD6, RPP14, PXK, and PDHB genes on 3p14.3. The highly correlated variants tagged an SLE-associated haplotype that was less frequent in the patients compared with the controls (OR=0.89, p=0.00684). A robust correlation between the association with SLE and enhanced expression of ABHD6 gene was revealed, while neither expression, nor splicing alterations associated with SLE susceptibility were detected for PXK. The SNP allele frequencies as well as eQTL pattern analysed in the CEU and CHB HapMap3 populations indicate that the SLE association and the effect on ABHD6 expression are specific to Europeans. CONCLUSIONS These results confirm the genetic association of the locus 3p14.3 with SLE in Europeans and point to the ABHD6 and not PXK, as the major susceptibility gene in the region. We suggest a pathogenic mechanism mediated by the upregulation of ABHD6 in individuals carrying the SLE-risk variants.
Collapse
Affiliation(s)
- Nina Y Oparina
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Manuel Martinez-Bueno
- Centro de Genómica e Investigación Oncológica (GENYO). Pfizer-Universidad de Granada-Junta de Andalucía, PTS, Granada, Spain
| | - César Magro-Checa
- Department of Rheumatology, Hospital Universitario San Cecilio, Granada, Spain
| | - Concepción Fernández
- Unidad de Enfermedades Autoimmunes Sistémicas, UGC Medicina Interna, Hospital Universitario San Cecilio, Granada, Spain
| | - Rafaela Ortega Castro
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | | | - Sandra D'Alfonso
- Department of Health Sciences and IRCAD, University of Eastern Piedmont, Novara, Italy
| | | | | | - Bernard R Lauwerys
- Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Bruxells, Belgium
| | - Emoke Endreffy
- Department of Pediatrics and Health Center, University of Szeged, Szeged, Hungary
| | - László Kovács
- Department of Rheumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Alejandro Escudero
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | - Chary López-Pedrera
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | - Carlos Vasconcelos
- Centro Hospitalar do Porto/Hospital Santo Antonio and UMIB/ICBAS, Porto, Portugal
| | | | - Johan Frostegård
- IMM, Unit of Immunology and Chronic disease, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Truedsson
- Department of Laboratory Medicine, Section of M.I.G., Lund University, Lund, Sweden
| | - Javier Martin
- Instituto de Biomedicina y Parasitología López Neyra, CSIC, Armilla, Spain
| | - Enrique Raya
- Department of Rheumatology, Hospital Universitario San Cecilio, Granada, Spain
| | - Norberto Ortego-Centeno
- Unidad de Enfermedades Autoimmunes Sistémicas, UGC Medicina Interna, Hospital Universitario San Cecilio, Granada, Spain
| | - Maria de Los Angeles Aguirre
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | | | | | - Marta E Alarcon-Riquelme
- Centro de Genómica e Investigación Oncológica (GENYO). Pfizer-Universidad de Granada-Junta de Andalucía, PTS, Granada, Spain Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Lee YH, Bae SC, Song GG. Association between the CTLA-4, CD226, FAS polymorphisms and rheumatoid arthritis susceptibility: a meta-analysis. Hum Immunol 2015; 76:83-9. [PMID: 25645050 DOI: 10.1016/j.humimm.2015.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/03/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We explored whether cytotoxic T lymphocyte antigen-4 (CTLA-4) rs5742909, CD226 rs763361, FAS rs1800682, and FASL rs763110 polymorphisms are associated with rheumatoid arthritis (RA). METHODS We performed a meta-analysis on the association between the four gene polymorphisms and RA. RESULTS Nineteen studies were included in the meta-analysis. Meta-analysis of all study subjects showed no association between RA and the CTLA-4 rs5742909 T allele (OR=1.057, 95% CI=0.782-1.429, p=0.719). However, the meta-analysis revealed an association between RA and the CD226 rs763361 T allele in all study subjects (OR=1.294, 95% CI=1.063-1.576, p=0.010), and an association was found between the CD226 rs763361 TT genotype and RA in Asians (OR=1.363, 95% CI=1.126-1.651, p=0.001). Meta-analysis showed no association between RA and the FAS rs1800682 G/A polymorphism. However, meta-analysis revealed an association between RA and the FASL rs763110 T allele in all study subjects (OR=1.366, 95% CI=1.093-1.707, p=0.006) and in Asians (OR=1.402, 95% CI=1.059-1.855, p=0.014). CONCLUSIONS Our meta-analysis demonstrates that the CD226 rs763361 and FASL rs763110 polymorphisms are associated with RA, especially in Asians.
Collapse
Affiliation(s)
- Young Ho Lee
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea.
| | - Sang-Cheol Bae
- Division of Rheumatology, Department of Internal Medicine, The Hospital for Rheumatic Diseases, Hanyang University Medical Center, Seoul, South Korea
| | - Gwan Gyu Song
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
CD226 rs727088A>G polymorphism increases the susceptibility to gastric cancer in Chinese populations. Gene 2014; 557:92-7. [PMID: 25510399 DOI: 10.1016/j.gene.2014.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 01/21/2023]
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide, especially in Asia. The development of GC is a multifactorial process and numerous studies have linked genetic variation to GC risk. In this study, we evaluated the effects of single nucleotide polymorphisms (SNPs) of CD226 on GC susceptibility in Chinese populations including 687 cancer patients and 936 control subjects. We found that the G allele of the rs727088A>G polymorphism in the 3'-untranslated region of CD226 was significantly associated with risk of GC using logistic regression (P<10(-3)). GC patients who harbored the rs727088G allele had significantly increased cancer risk (odds ratio=1.43, 95% confidence interval=1.23-1.67) compared with those patients harboring the rs727088A allele. Moreover, functional relevance was further performed that individuals carrying the rs727088G allele were correlated with lower expression level of CD226 than individuals carrying the rs727088AA homozygous genotype. These findings indicated that functional polymorphism rs727088A>G in CD226 might modify the susceptibility for the development of GC.
Collapse
|
30
|
Wang H, Flannery SM, Dickhöfer S, Huhn S, George J, Kubarenko AV, Lascorz J, Bevier M, Willemsen J, Pichulik T, Schafmayer C, Binder M, Manoury B, Paludan SR, Alarcon-Riquelme M, Bowie AG, Försti A, Weber ANR. A coding IRAK2 protein variant compromises Toll-like receptor (TLR) signaling and is associated with colorectal cancer survival. J Biol Chem 2014; 289:23123-23131. [PMID: 24973222 DOI: 10.1074/jbc.m113.492934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within innate immune signaling pathways, interleukin-1 receptor-associated kinases (IRAKs) fulfill key roles downstream of multiple Toll-like receptors and the interleukin-1 receptor. Although human IRAK4 deficiency was shown to lead to severe immunodeficiency in response to pyogenic bacterial infection during childhood, little is known about the role of human IRAK2. We here identified a non-synonymous IRAK2 variant, rs35060588 (coding R214G), as hypofunctional in terms of NF-κB signaling and Toll-like receptor-mediated cytokine induction. This was due to reduced ubiquitination of TRAF6, a key step in signal transduction. IRAK2 rs35060588 occurs in 3-9% of individuals in different ethnic groups, and our studies suggested a genetic association of rs35060588 with colorectal cancer survival. This for the first time implicates human IRAK2 in a human disease and highlights the R214G IRAK2 variant as a potential novel and broadly applicable biomarker for disease or as a therapeutic intervention point.
Collapse
Affiliation(s)
- Hui Wang
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Sinead M Flannery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sabine Dickhöfer
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Stefanie Huhn
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Julie George
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Andriy V Kubarenko
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Jesus Lascorz
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Melanie Bevier
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Joschka Willemsen
- Department of Infectious Diseases/Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Tica Pichulik
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany,; POPGEN Biobank Project, Christian-Albrechts University, 24105 Kiel, Germany
| | - Marco Binder
- Department of Infectious Diseases/Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Bénédicte Manoury
- INSERM, Unité 1013 and Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75015 Paris, France
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Bartholin Building, 8000 Aarhus, Denmark
| | - Marta Alarcon-Riquelme
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain,; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104,; BIOLUPUS Network, European Science Foundation, F-67080 Strasbourg Cedex, France, and
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany,; Center for Primary Health Care Research, Clinical Research Center, Lund University, 20502 Malmö, Sweden
| | - Alexander N R Weber
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany,.
| |
Collapse
|
31
|
CD226 rs763361 is associated with the susceptibility to type 1 diabetes and greater frequency of GAD65 autoantibody in a Brazilian cohort. Mediators Inflamm 2014; 2014:694948. [PMID: 24891767 PMCID: PMC4033476 DOI: 10.1155/2014/694948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 12/04/2022] Open
Abstract
CD226 rs763361 variant increases susceptibility to type 1 diabetes (T1D) in Caucasians. There is no data about CD226 variants in the very heterogeneous Brazilian population bearing a wide degree of admixture. We investigated its association with T1D susceptibility, clinical phenotypes, and autoimmune manifestations (islet and extrapancreatic autoantibodies). Casuistry. 532 T1D patients and 594 controls in a case-control study. Initially, CD226 coding regions and boundaries were sequenced in a subset of 106 T1D patients and 102 controls. In a second step, two CD226 variants, rs763361 (exon 7) and rs727088 (3′ UTR region), involved with CD226 regulation, were genotyped in the entire cohort. C-peptide and autoantibody levels were determined. No new polymorphic variant was found. The variants rs763361 and rs727088 were in strong linkage disequilibrium. The TT genotype of rs763361 was associated with TID risk (OR = 1.503; 95% CI = 1.135–1.991; P = 0.0044), mainly in females (P = 0.0012), greater frequency of anti-GAD autoantibody (31.9% × 24.5%; OR = 1.57; CI = 1.136–2.194; P = 0.0081), and lower C-peptide levels when compared to those with TC + CC genotypes (0.41 ± 0.30 ng/dL versus 0.70 ± 0.53 ng/dL P = 0.0218). Conclusions. The rs763361 variant of CD226 gene (TT genotype) was associated with susceptibility to T1D and with the degree of aggressiveness of the disease in T1D patients from Brazil. Ancestry had no effect.
Collapse
|
32
|
Ramos PS, Shaftman SR, Ward RC, Langefeld CD. Genes associated with SLE are targets of recent positive selection. Autoimmune Dis 2014; 2014:203435. [PMID: 24587899 PMCID: PMC3920976 DOI: 10.1155/2014/203435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/12/2013] [Indexed: 01/03/2023] Open
Abstract
The reasons for the ethnic disparities in the prevalence of systemic lupus erythematosus (SLE) and the relative high frequency of SLE risk alleles in the population are not fully understood. Population genetic factors such as natural selection alter allele frequencies over generations and may help explain the persistence of such common risk variants in the population and the differential risk of SLE. In order to better understand the genetic basis of SLE that might be due to natural selection, a total of 74 genomic regions with compelling evidence for association with SLE were tested for evidence of recent positive selection in the HapMap and HGDP populations, using population differentiation, allele frequency, and haplotype-based tests. Consistent signs of positive selection across different studies and statistical methods were observed at several SLE-associated loci, including PTPN22, TNFSF4, TET3-DGUOK, TNIP1, UHRF1BP1, BLK, and ITGAM genes. This study is the first to evaluate and report that several SLE-associated regions show signs of positive natural selection. These results provide corroborating evidence in support of recent positive selection as one mechanism underlying the elevated population frequency of SLE risk loci and supports future research that integrates signals of natural selection to help identify functional SLE risk alleles.
Collapse
Affiliation(s)
- Paula S. Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie R. Shaftman
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ralph C. Ward
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carl D. Langefeld
- Department of Public Health Sciences, Wake Forest School of Medicine and Center for Public Health Genomics, Winston-Salem, NC 27157, USA
| |
Collapse
|
33
|
Shi S, Zhou B, Zhang K, Zhang L. Association between two genetic variants of CD226 gene and Cervical Squamous Cell Carcinoma: A case–control study. Gene 2013; 519:159-63. [DOI: 10.1016/j.gene.2012.11.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/24/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
|
34
|
Hromadnikova I, Pirkova P, Sedlackova L. Influence of in vitro IL-2 or IL-15 alone or in combination with Hsp-70-derived 14-mer peptide (TKD) on the expression of NK cell activatory and inhibitory receptors. Mediators Inflamm 2013; 2013:405295. [PMID: 23476104 PMCID: PMC3588175 DOI: 10.1155/2013/405295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022] Open
Abstract
NK cells represent a potential tool for adoptive immunotherapy against tumors. Membrane-bound Hsp70 acts as a tumor-specific marker enhancing NK cell activity. Using flow cytometry the effect of in vitro stimulation with IL-2 or IL-15 alone or in combination with Hsp70-derived 14-mer peptide (TKD) on cell surface expression of NK activatory receptors (CD16, NKG2D, NKG2C, NKp46, NKp44, NKp30, KIR2DL4, DNAM-1, and LAMP1) and NK inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2, and NKR-P1A) in healthy individuals was studied. Results were expressed as the percentage of receptor expressing cells and the amount of receptor expressed by CD3(-)CD56(+) cellular population. CD94, NKG2D, NKp44, NKp30, KIR2DL4, DNAM-1, LAMP1, NKG2A, and NKR-P1A were upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD. KIR2DL2/L3 was upregulated only by IL-15 and IL-15/TKD. Concurrently, an increase in a number of NK cells positive for CD94, NKp44, NKp30, KIR2DL4, and LAMP1 was observed. IL-15 and IL-15/TKD caused also cell number rise positive for KIR2DL2/L3 and NKR-P1A. Cell number positive for NKG2C and NKG2A was increased only by IL-2 and IL-2/TKD. The diverse effect of IL-2 or IL-15 w or w/o TKD on cell surface expression was observed in CD16, NKp46, and LIR1/ILT-2.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cells, Cultured
- HSP70 Heat-Shock Proteins/chemistry
- Humans
- Interleukin-15/pharmacology
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lysosomal Membrane Proteins/metabolism
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Natural Cytotoxicity Triggering Receptor 2/metabolism
- Natural Cytotoxicity Triggering Receptor 3/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Receptors, IgG/metabolism
- Receptors, KIR2DL2
- Receptors, KIR2DL4/metabolism
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague, Czech Republic.
| | | | | |
Collapse
|
35
|
Hashemi M, Zakeri Z, Eskandari-Nasab E, Atabaki M, Pourhosseini SME, Jahantigh M, Bahari G, Taheri M. CD226 rs763361 (Gly307Ser) polymorphism is associated with susceptibility to rheumatoid arthritis in Zahedan, southeast Iran. IRANIAN BIOMEDICAL JOURNAL 2013; 17:194-199. [PMID: 23999715 PMCID: PMC3882922 DOI: 10.6091/ibj.1205.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease with many genetic factors predisposing to disease susceptibility. The aim of the present study was to investigate the impact of CD226 rs727088 and rs763361 polymorphisms and susceptibility to RA in a sample of the Iranian population. METHODS This case-control study was carried out on 100 patients with RA and 104 healthy subjects. The polymorphisms were determined using tetra amplification refractory mutation system-polymerase chain reaction assay. RESULTS The rs763361 (Gly307Ser) polymorphism increased the risk of RA in codominant, dominant and recessive-tested inheritance models (odds ratio [OR] = 3.18, 95% confidence intervals [95% CI] = 1.44-7.02, P = 0.004, CC vs. TT, and OR = 1.98, 95% CI = 1.10-3.57, P = 0.023, CC vs. CT-TT, and OR = 2.61, 95% CI = 1.26-5.37, P = 0.010, CC + CT vs. TT, respectively). In addition, the rs763361 T allele increased the risk of RA (OR = 2.06, 95% CI = 1.38-3.08, P<0.001). However, no significant difference was observed among the groups regarding CD226 rs727088 polymorphism (χ2 = 3.20, P = 0.202). CONCLUSIONS Our finding showed that CD226 rs763361, but not rs727088, gene polymorphism increased the risk of RA in a sample of the Iranian population.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran;
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran;
| | - Zahra Zakeri
- Dept. of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran;
| | - Ebrahim Eskandari-Nasab
- Dept. of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran;
| | - Mahdi Atabaki
- Dept. of Immunology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran;
| | | | - Mehdi Jahantigh
- Dept. of Pathology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran;
| | - Gholamreza Bahari
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran;
| | - Mohsen Taheri
- Genetics of Non communicable Disease research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
36
|
Song G, Bae SC, Choi S, Ji J, Lee Y. Association between the CD226 rs763361 polymorphism and susceptibility to autoimmune diseases: a meta-analysis. Lupus 2012; 21:1522-30. [PMID: 22941566 DOI: 10.1177/0961203312458840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of this study was to explore whether the CD226 rs763361 polymorphism confers susceptibility to autoimmune diseases. METHODS A meta-analysis was conducted on the associations between the CD226 rs763361 polymorphism and autoimmune diseases using: 1) allele contrast, and 2) the recessive, 3) dominant and 4) additive models. RESULTS Ten articles that included 17 comparative studies on a total of 8900 patients and 10,295 controls were included in the meta-analysis. These studies were performed on seven European, five Asian and five South American sample populations. Meta-analysis of all study subjects revealed an association between the CD226 rs763361 T allele and the susceptibility to autoimmune diseases (odds ratio; OR 1.162, 95% confidence interval; CI 1.097-1.230, p < 1.0 × 10(-8)). Stratification by ethnicity indicated an association between the CD226 rs763361 T allele and autoimmune disease in Europeans and South Americans (OR 1.134, 95% CI 1.079-1.191, p = 6.7 × 10(-7); OR 1.308, 95% CI 1.160-1.475, p = 1.1 × 10(-5)) and between the CD226 rs763361 TT genotype and autoimmune disease in Asians (OR 1.366, 95% CI 1.130-1.650, p = 0.001). Disease-specific meta-analysis showed an association between systemic lupus erythematosus (SLE) and the CD226 rs763361 T allele (OR 1.150, 95% CI 1.040-1.271, p = 0.006), but no association between rheumatoid arthritis and the CD226 rs763361 polymorphism (OR for the T allele 1.207, 95% CI 0.913-1.596, p = 0.187). On the other hand, associations were found between the CD226 rs763361 T allele and systemic sclerosis (SSc) and type 1 diabetes (T1D) (OR 1.126, 95% CI 1.020-1.244, p = 0.019; OR 1.353, 95% CI 1.102-1.660, p = 0.004). CONCLUSIONS This meta-analysis demonstrates the CD226 rs763361 polymorphism confers susceptibility to autoimmune disease in Europeans, South Americans and Asians, and in particular, shows that the CD226 rs763361 polymorphism is associated with SLE, SSc and T1D. These results support the existence of an association between the CD226 gene and a subgroup of autoimmune diseases.
Collapse
Affiliation(s)
- Gg Song
- Division of Rheumatology, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
37
|
Płoski R, Szymański K, Bednarczuk T. The genetic basis of graves' disease. Curr Genomics 2012; 12:542-63. [PMID: 22654555 PMCID: PMC3271308 DOI: 10.2174/138920211798120772] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/09/2023] Open
Abstract
The presented comprehensive review of current knowledge about genetic factors predisposing to Graves’ disease (GD) put emphasis on functional significance of observed associations. In particular, we discuss recent efforts aimed at refining diseases associations found within the HLA complex and implicating HLA class I as well as HLA-DPB1 loci. We summarize data regarding non-HLA genes such as PTPN22, CTLA4, CD40, TSHR and TG which have been extensively studied in respect to their role in GD. We review recent findings implicating variants of FCRL3 (gene for FC receptor-like-3 protein), SCGB3A2 (gene for secretory uteroglobin-related protein 1- UGRP1) as well as other unverified possible candidate genes for GD selected through their documented association with type 1 diabetes mellitus: Tenr–IL2–IL21, CAPSL (encoding calcyphosine-like protein), IFIH1(gene for interferon-induced helicase C domain 1), AFF3, CD226 and PTPN2. We also review reports on association of skewed X chromosome inactivation and fetal microchimerism with GD. Finally we discuss issues of genotype-phenotype correlations in GD.
Collapse
Affiliation(s)
- Rafał Płoski
- Department of Medical Genetics, Centre for Biostructure, Medical University of Warsaw, Poland
| | | | | |
Collapse
|
38
|
Bossini-Castillo L, Simeon CP, Beretta L, Broen JC, Vonk MC, Ríos-Fernández R, Espinosa G, Carreira P, Camps MT, Castillo MJ, González-Gay MA, Beltrán E, Carmen Freire MD, Narváez J, Tolosa C, Witte T, Kreuter A, Schuerwegh AJ, Hoffmann-Vold AM, Hesselstrand R, Lunardi C, van Laar JM, Chee MM, Herrick A, Koeleman BP, Denton CP, Fonseca C, Radstake TR, Martin J. A multicenter study confirms CD226 gene association with systemic sclerosis-related pulmonary fibrosis. Arthritis Res Ther 2012; 14:R85. [PMID: 22531499 PMCID: PMC3446459 DOI: 10.1186/ar3809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/27/2012] [Accepted: 04/24/2012] [Indexed: 12/12/2022] Open
Abstract
Introduction CD226 genetic variants have been associated with a number of autoimmune diseases and recently with systemic sclerosis (SSc). The aim of this study was to test the influence of CD226 loci in SSc susceptibility, clinical phenotypes and autoantibody status in a large multicenter European population. Methods A total of seven European populations of Caucasian ancestry were included, comprising 2,131 patients with SSc and 3,966 healthy controls. Three CD226 single nucleotide polymorphisms (SNPs), rs763361, rs3479968 and rs727088, were genotyped using Taqman 5'allelic discrimination assays. Results Pooled analyses showed no evidence of association of the three SNPs, neither with the global disease nor with the analyzed subphenotypes. However, haplotype block analysis revealed a significant association for the TCG haplotype (SNP order: rs763361, rs34794968, rs727088) with lung fibrosis positive patients (PBonf = 3.18E-02 OR 1.27 (1.05 to 1.54)). Conclusion Our data suggest that the tested genetic variants do not individually influence SSc susceptibility but a CD226 three-variant haplotype is related with genetic predisposition to SSc-related pulmonary fibrosis.
Collapse
Affiliation(s)
- Lara Bossini-Castillo
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avenida del Conocimiento s/n, Granada, 18100, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lupus nephritis: an overview of recent findings. Autoimmune Dis 2012; 2012:849684. [PMID: 22536486 PMCID: PMC3318208 DOI: 10.1155/2012/849684] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 11/30/2011] [Indexed: 11/18/2022] Open
Abstract
Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) since it is the major predictor of poor prognosis. In susceptible individuals suffering of SLE, in situ formation and deposit of immune complexes (ICs) from apoptotic bodies occur in the kidneys as a result of an amplified epitope immunological response. IC glomerular deposits generate release of proinflammatory cytokines and cell adhesion molecules causing inflammation. This leads to monocytes and polymorphonuclear cells chemotaxis. Subsequent release of proteases generates endothelial injury and mesangial proliferation. Presence of ICs promotes adaptive immune response and causes dendritic cells to release type I interferon. This induces maturation and activation of infiltrating T cells, and amplification of Th2, Th1 and Th17 lymphocytes. Each of them, amplify B cells and activates macrophages to release more proinflammatory molecules, generating effector cells that cannot be modulated promoting kidney epithelial proliferation and fibrosis. Herein immunopathological findings of LN are reviewed.
Collapse
|
40
|
Gan EH, Mitchell AL, Macarthur K, Pearce SHS. The role of a nonsynonymous CD226 (DNAX-accessory molecule-1) variant (Gly 307Ser) in isolated Addison's disease and autoimmune polyendocrinopathy type 2 pathogenesis. Clin Endocrinol (Oxf) 2011; 75:165-8. [PMID: 21521299 DOI: 10.1111/j.1365-2265.2011.04030.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONTEXT Genome-wide association studies have discovered various susceptibility alleles that are shared among different autoimmune conditions, implicating several biochemical pathways in the pathogenesis of autoimmunity. A nonsynonymous polymorphism in exon 7 of the gene encoding the lymphocyte cell-surface CD226 (DNAM1) receptor, Gly307Ser (rs763361), has recently been identified as conferring risk to many autoimmune disorders. We performed a case-control study to determine if the CD226 307Ser variant is also associated with autoimmune Addison's disease (AAD). PATIENT AND DESIGN: We genotyped rs763361 in a UK cohort of 326 AAD subjects [183 with associated autoimmune conditions - autoimmune polyendocrinopathy syndrome type-2 (APS2)] and 311 healthy controls, using a Taqman genotyping assay. RESULTS The susceptibility 'T' allele at rs763361 was found in 50·5% of patients with AAD compared to 46·5% of controls (P-value 0·16, OR 1·17; 95% CI 0·94-1·46). However, comparing the APS2 subgroup to healthy controls, the T allele was found in 53·8%vs 46·5% in controls (OR 1·34; CI 1·04-1·74, P-value 0·03). In contrast, the T allele frequency was 46·2% in isolated Addison's disease (P-value 0·94 vs healthy controls). CONCLUSION It seems likely that the 307Ser variant of the CD226 receptor is associated with APS2 because of its underlying association with type 1 diabetes and autoimmune thyroid disease. The strength of association in patients with isolated AAD appears to be weak or nonexistent compared to that in APS2.
Collapse
Affiliation(s)
- Earn H Gan
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
41
|
Escalante NK, von Rossum A, Lee M, Choy JC. CD155 on Human Vascular Endothelial Cells Attenuates the Acquisition of Effector Functions in CD8 T Cells. Arterioscler Thromb Vasc Biol 2011; 31:1177-84. [DOI: 10.1161/atvbaha.111.224162] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
CD155 is a cell surface protein that has recently been described to exert immune regulatory functions. We have characterized the expression of CD155 on human vascular endothelial cells (ECs) and examined its role in the regulation of T-cell activation.
Methods and Results—
CD155 was expressed on resting human vascular ECs and was upregulated in an interferon-γ (IFNγ)–dependent manner. When the function of CD155 in regulating T-cell activation was examined, antibody-mediated neutralization of CD155 did not affect CD8 T-cell proliferation in response to stimulation with ECs. However, neutralization of CD155 activity or small interfering RNA-mediated inhibition of CD155 expression in ECs increased expression of IFNγ and cytotoxic effector function in activated CD8 T cells.
Conclusion—
CD155 is an IFNγ-inducible immune regulatory protein on the surface of human ECs that attenuates the acquisition of effector functions in CD8 T cells.
Collapse
Affiliation(s)
- Nichole K. Escalante
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anna von Rossum
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Martin Lee
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jonathan C. Choy
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
42
|
Dieudé P, Guedj M, Truchetet ME, Wipff J, Revillod L, Riemekasten G, Matucci-Cerinic M, Melchers I, Hachulla E, Airo P, Diot E, Hunzelmann N, Mouthon L, Cabane J, Cracowski JL, Riccieri V, Distler J, Amoura Z, Valentini G, Camaraschi P, Tarner I, Frances C, Carpentier P, Brembilla NC, Meyer O, Kahan A, Chizzolini C, Boileau C, Allanore Y. Association of the CD226 Ser307 variant with systemic sclerosis: Evidence of a contribution of costimulation pathways in systemic sclerosis pathogenesis. ACTA ACUST UNITED AC 2011; 63:1097-105. [DOI: 10.1002/art.30204] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Rai E, Wakeland EK. Genetic predisposition to autoimmunity--what have we learned? Semin Immunol 2011; 23:67-83. [PMID: 21288738 DOI: 10.1016/j.smim.2011.01.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/10/2011] [Indexed: 12/20/2022]
Abstract
Rapid advances in genetic technologies have led to the identification of more than 85 loci that contribute to susceptibility to autoimmune diseases. These susceptibility genes are distributed throughout the innate and adaptive immune systems, indicating that dysregulations in both immune systems participate in the development of autoimmunity. A significant subset of these susceptibility genes are shared between multiple autoimmune diseases. However, the dysregulation of specific pathways, such as the pathogen recognition receptors of the innate immune system and the TNF supergene family, are significantly involved in some autoimmune diseases. Although these findings dramatically increase the details available concerning the nature of genetic predisposition to autoimmunity, a mechanistic understanding of the processes involved has not been achieved. Future studies must focus on correlating phenotypes with specific genotypes to improve our understanding of the immune processes that are dysregulated during the development of autoimmunity.
Collapse
Affiliation(s)
- Ekta Rai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75229, USA
| | | |
Collapse
|
44
|
Delgado-Vega A, Sánchez E, Löfgren S, Castillejo-López C, Alarcón-Riquelme ME. Recent findings on genetics of systemic autoimmune diseases. Curr Opin Immunol 2010; 22:698-705. [PMID: 20933377 DOI: 10.1016/j.coi.2010.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 12/11/2022]
Abstract
Association studies of over 1 million SNPs capturing most of the human genome common variation became possible thanks to the information provided by the HapMap International project and the development of high-throughput genotyping technologies at accessible prices. Genome-wide scans analyzing thousands of individuals have now identified most if not all of the major genes involved in susceptibility for several systemic autoimmune diseases. In particular, results for rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and systemic sclerosis (SSc) are reviewed here. While most genes are shared between diseases, few seem to be unique reflecting that we still are long before knowing all genes, their interactions with other genes and the environment and their impact on biological functions.
Collapse
Affiliation(s)
- Angélica Delgado-Vega
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarsjölds väg 20, 751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|