1
|
Ryan SM, Almassey M, Burch AM, Ngo G, Martin JM, Myers D, Compton D, Archie S, Cross M, Naeger L, Salzman A, Virola‐Iarussi A, Barbee SA, Mortimer NT, Sanyal S, Vrailas‐Mortimer AD. Drosophila p38 MAPK interacts with BAG-3/starvin to regulate age-dependent protein homeostasis. Aging Cell 2021; 20:e13481. [PMID: 34674371 PMCID: PMC8590102 DOI: 10.1111/acel.13481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
Collapse
Affiliation(s)
- Sarah M. Ryan
- Department of Biological Sciences University of Denver Denver CO USA
| | - Michael Almassey
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Gia Ngo
- Department of Biological Sciences University of Denver Denver CO USA
| | - Julia M. Martin
- School of Biological Sciences Illinois State University Normal IL USA
| | - David Myers
- School of Biological Sciences Illinois State University Normal IL USA
| | - Devin Compton
- School of Biological Sciences Illinois State University Normal IL USA
| | - Shira Archie
- School of Biological Sciences Illinois State University Normal IL USA
| | - Megan Cross
- School of Biological Sciences Illinois State University Normal IL USA
| | - Lauren Naeger
- School of Biological Sciences Illinois State University Normal IL USA
| | - Ashley Salzman
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Scott A. Barbee
- Department of Biological Sciences University of Denver Denver CO USA
| | | | - Subhabrata Sanyal
- Department of Cell Biology Emory University Atlanta GA USA
- Calico San Francisco CA USA
| | - Alysia D. Vrailas‐Mortimer
- Department of Biological Sciences University of Denver Denver CO USA
- School of Biological Sciences Illinois State University Normal IL USA
- Department of Cell Biology Emory University Atlanta GA USA
| |
Collapse
|
2
|
Ma Y, Zhu S, Lv T, Gu X, Feng H, Zhen J, Xin W, Wan Q. SQSTM1/p62 Controls mtDNA Expression and Participates in Mitochondrial Energetic Adaption via MRPL12. iScience 2020; 23:101428. [PMID: 32805647 PMCID: PMC7452302 DOI: 10.1016/j.isci.2020.101428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) encodes thirteen core components of OXPHOS complexes, and its steady expression is crucial for cellular energy homeostasis. However, the regulation of mtDNA expression machinery, along with its sensing mechanism to energetic stresses, is not fully understood. Here, we identified SQSTM1/p62 as an important regulator of mtDNA expression machinery, which could effectively induce mtDNA expression and the effects were mediated by p38-dependent upregulation of mitochondrial ribosomal protein L12 (MRPL12) in renal tubular epithelial cells (TECs), a highly energy-demanding cell type related to OXPHOS. We further identified a direct binding site within the MRPL12 promoter to ATF2, the downstream effector of p38. Besides, SQSTM1/p62-induced mtDNA expression is involved in both serum deprivation and hypoxia-induced mitochondrial response, which was further highlighted by kidney injury phenotype of TECs-specific SQSTM1/p62 knockout mice. Collectively, these data suggest that SQSTM1/p62 is a key regulator and energetic sensor of mtDNA expression machinery. SQSTM1/p62 is an important regulator of mtDNA expression machinery SQSTM1/p62 induces MRPL12 expression via activating p38/ATF2 signaling pathway SQSTM1/p62 maintains TECs mitochondrial homeostasis and kidney function
Collapse
Affiliation(s)
- Yuan Ma
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
| | - Suwei Zhu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tingting Lv
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xia Gu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Xin
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China.
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Ge SS, Chen B, Wu YY, Long QS, Zhao YL, Wang PY, Yang S. Current advances of carbene-mediated photoaffinity labeling in medicinal chemistry. RSC Adv 2018; 8:29428-29454. [PMID: 35547988 PMCID: PMC9084484 DOI: 10.1039/c8ra03538e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength. Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.
Collapse
Affiliation(s)
- Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
- College of Pharmacy, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
4
|
Adamik J, Silbermann R, Marino S, Sun Q, Anderson JL, Zhou D, Xie XQ, Roodman GD, Galson DL. XRK3F2 Inhibition of p62-ZZ Domain Signaling Rescues Myeloma-Induced GFI1-Driven Epigenetic Repression of the Runx2 Gene in Pre-osteoblasts to Overcome Differentiation Suppression. Front Endocrinol (Lausanne) 2018; 9:344. [PMID: 30008697 PMCID: PMC6033965 DOI: 10.3389/fendo.2018.00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/07/2018] [Indexed: 01/05/2023] Open
Abstract
Multiple myeloma bone disease (MMBD) is characterized by non-healing lytic bone lesions that persist even after a patient has achieved a hematologic remission. We previously reported that p62 (sequestosome-1) in bone marrow stromal cells (BMSC) is critical for the formation of MM-induced signaling complexes that mediate OB suppression. Importantly, XRK3F2, an inhibitor of the p62-ZZ domain, blunted MM-induced Runx2 suppression in vitro, and induced new bone formation and remodeling in the presence of tumor in vivo. Additionally, we reported that MM cells induce the formation of repressive chromatin on the Runx2 gene in BMSC via direct binding of the transcriptional repressor GFI1, which recruits the histone modifiers, histone deacetylase 1 (HDAC1) and Enhancer of zeste homolog 2 (EZH2). In this study we investigated the mechanism by which blocking p62-ZZ domain-dependent signaling prevents MM-induced suppression of Runx2 in BMSC. XRK3F2 prevented MM-induced upregulation of Gfi1 and repression of the Runx2 gene when present in MM-preOB co-cultures. We also show that p62-ZZ-domain blocking by XRK3F2 also prevented MM conditioned media and TNF plus IL7-mediated Gfi1 mRNA upregulation and the concomitant Runx2 repression, indicating that XRK3F2's prevention of p62-ZZ domain signaling within preOB is involved in the response. Chromatin immunoprecipitation (ChIP) analyses revealed that XRK3F2 decreased MM-induced GFI1 occupancy at the Runx2-P1 promoter and prevented recruitment of HDAC1, thus preserving the transcriptionally permissive chromatin mark H3K9ac on Runx2 and allowing osteogenic differentiation. Furthermore, treatment of MM-exposed preOB with XRK3F2 after MM removal decreased GFI1 enrichment at Runx2-P1 and rescued MM-induced suppression of Runx2 mRNA and its downstream osteogenic gene targets together with increased osteogenic differentiation. Further, primary BMSC (hBMSC) from MM patients (MM-hBMSC) had little ability to increase H3K9ac on the Runx2 promoter in osteogenic conditions when compared to hBMSC from healthy donors (HD). XRK3F2 treatment enriched Runx2 gene H3K9ac levels in MM-hBMSC to the level observed in HD-hBMSC, but did not alter HD-hBMSC H3K9ac. Importantly, XRK3F2 treatment of long-term MM-hBMSC cultures rescued osteogenic differentiation and mineralization. Our data show that blocking p62-ZZ domain-dependent signaling with XRK3F2 can reverse epigenetic-based mechanisms of MM-induced Runx2 suppression and promote osteogenic differentiation.
Collapse
Affiliation(s)
- Juraj Adamik
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca Silbermann
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
- Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Silvia Marino
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Quanhong Sun
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Judith L. Anderson
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Dan Zhou
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - G. David Roodman
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Deborah L. Galson
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Deborah L. Galson ;
| |
Collapse
|
5
|
Hagiwara K, Ishii H, Murakami T, Takeshima SN, Chutiwitoonchai N, Kodama EN, Kawaji K, Kondoh Y, Honda K, Osada H, Tsunetsugu-Yokota Y, Suzuki M, Aida Y. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor. PLoS One 2015; 10:e0145573. [PMID: 26701275 PMCID: PMC4689350 DOI: 10.1371/journal.pone.0145573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/04/2015] [Indexed: 01/18/2023] Open
Abstract
The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54–74 within the C-terminal α-helical domain (αH3) of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Kyoji Hagiwara
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hideki Ishii
- Molecular Imaging Medicinal Chemistry Laboratory, RIKEN Center for Molecular Imaging Science, 6-7-3 Minatoshima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | - Eiichi N Kodama
- Division of Miyagi Community Health Promotion, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Aoba-ku, Sendai 980-8575, Japan
| | - Kumi Kawaji
- Division of Miyagi Community Health Promotion, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Aoba-ku, Sendai 980-8575, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN CSRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN CSRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Frontier Biosciences, Department of Immunology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masaaki Suzuki
- Molecular Imaging Medicinal Chemistry Laboratory, RIKEN Center for Molecular Imaging Science, 6-7-3 Minatoshima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Wu M, Li M. Resonant waveguide grating for monitoring biomolecular interactions. Methods Mol Biol 2015; 1278:139-152. [PMID: 25859947 DOI: 10.1007/978-1-4939-2425-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Label-free detection technologies have been widely used to characterize biomolecular interactions without having to label the target molecules. These technologies exhibit considerable potential in facilitating assay development and enabling new integrated readouts. When combined with high-throughput capability, label-free detection may be applied to small molecule screens for drug candidates. Based on the resonant waveguide grating biosensors, a label-free high-throughput detection system, the Epic(®) System, has been applied to monitor molecular interactions. Here we describe a generic label-free assay to quantitatively measure phospho-specific interactions between a trafficking signal-phosphorylated SWTY peptide and 14-3-3 proteins or anti-phosphopeptide antibodies. Compared with the solution-based fluorescence anisotropy assay, our results support that the high-throughput resonant waveguide grating biosensor system has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. Hence, it provides a new generic HTS platform for phospho-detection.
Collapse
Affiliation(s)
- Meng Wu
- High Throughput Screening Facility at Univ. of Iowa (UIHTS), Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S. Grand Avenue, 316 PHAR, Iowa City, IA, 52242, USA,
| | | |
Collapse
|
7
|
Manley S, Williams JA, Ding WX. Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood) 2013; 238:525-38. [PMID: 23856904 DOI: 10.1177/1535370213489446] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p62/sequestosome-1/A170/ZIP (hereafter referred to as p62) is a scaffold protein that has multiple functions, such as signal transduction, cell proliferation, cell survival, cell death, inflammation, tumourigenesis and oxidative stress response. While p62 is an autophagy substrate and is degraded by autophagy, p62 serves as an autophagy receptor for selective autophagic clearance of protein aggregates and organelles. Moreover, p62 functions as a signalling hub for various signalling pathways, including NF-κB, Nrf2 and mTOR. In this review, we discuss the pathophysiological role of p62 in the liver, including formation of hepatic inclusion bodies, cholestasis, obesity, insulin resistance, liver cell death and tumourigenesis.
Collapse
Affiliation(s)
- Sharon Manley
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | | | | |
Collapse
|
8
|
Müller TD, Lee SJ, Jastroch M, Kabra D, Stemmer K, Aichler M, Abplanalp B, Ananthakrishnan G, Bhardwaj N, Collins S, Divanovic S, Endele M, Finan B, Gao Y, Habegger KM, Hembree J, Heppner KM, Hofmann S, Holland J, Küchler D, Kutschke M, Krishna R, Lehti M, Oelkrug R, Ottaway N, Perez-Tilve D, Raver C, Walch AK, Schriever SC, Speakman J, Tseng YH, Diaz-Meco M, Pfluger PT, Moscat J, Tschöp MH. p62 links β-adrenergic input to mitochondrial function and thermogenesis. J Clin Invest 2012; 123:469-78. [PMID: 23257354 DOI: 10.1172/jci64209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 11/01/2012] [Indexed: 12/22/2022] Open
Abstract
The scaffold protein p62 (sequestosome 1; SQSTM1) is an emerging key molecular link among the metabolic, immune, and proliferative processes of the cell. Here, we report that adipocyte-specific, but not CNS-, liver-, muscle-, or myeloid-specific p62-deficient mice are obese and exhibit a decreased metabolic rate caused by impaired nonshivering thermogenesis. Our results show that p62 regulates energy metabolism via control of mitochondrial function in brown adipose tissue (BAT). Accordingly, adipocyte-specific p62 deficiency led to impaired mitochondrial function, causing BAT to become unresponsive to β-adrenergic stimuli. Ablation of p62 leads to decreased activation of p38 targets, affecting signaling molecules that control mitochondrial function, such as ATF2, CREB, PGC1α, DIO2, NRF1, CYTC, COX2, ATP5β, and UCP1. p62 ablation in HIB1B and BAT primary cells demonstrated that p62 controls thermogenesis in a cell-autonomous manner, independently of brown adipocyte development or differentiation. Together, our data identify p62 as a novel regulator of mitochondrial function and brown fat thermogenesis.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum Muenchen and Department of Medicine, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sugahara K, Thimmaiah KN, Bid HK, Houghton PJ, Rangappa KS. Anti-tumor activity of a novel HS-mimetic-vascular endothelial growth factor binding small molecule. PLoS One 2012; 7:e39444. [PMID: 22916091 PMCID: PMC3419744 DOI: 10.1371/journal.pone.0039444] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/24/2012] [Indexed: 01/05/2023] Open
Abstract
The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor.
Collapse
Affiliation(s)
- Basappa
- Faculty of Advanced Life Sciences, Hokkaido University, Sapporo, Japan
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Chemistry, Bangalore University, Bangalore, India
| | - Kazuyuki Sugahara
- Faculty of Advanced Life Sciences, Hokkaido University, Sapporo, Japan
| | | | - Hemant K. Bid
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Peter J. Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | | |
Collapse
|
10
|
Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity. Biochem J 2011; 435:237-46. [DOI: 10.1042/bj20100743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical arrays were employed to screen ligands for HtpG, the prokaryotic homologue of Hsp (heat-shock protein) 90. We found that colistins and the closely related polymyxin B interact physically with HtpG. They bind to the N-terminal domain of HtpG specifically without affecting its ATPase activity. The interaction caused inhibition of chaperone function of HtpG that suppresses thermal aggregation of substrate proteins. Further studies were performed with one of these cyclic lipopeptide antibiotics, colistin sulfate salt. It inhibited the chaperone function of the N-terminal domain of HtpG. However, it inhibited neither the chaperone function of the middle domain of HtpG nor that of other molecular chaperones such as DnaK, the prokaryotic homologue of Hsp70, and small Hsp. The addition of colistin sulfate salt increased surface hydrophobicity of the N-terminal domain of HtpG and induced oligomerization of HtpG and its N-terminal domain. These structural changes are discussed in relation to the inhibition of the chaperone function.
Collapse
|
11
|
Basappa, Murugan S, Kavitha CV, Purushothaman A, Nevin KG, Sugahara K, Rangappa KS. A small oxazine compound as an anti-tumor agent: a novel pyranoside mimetic that binds to VEGF, HB-EGF, and TNF-α. Cancer Lett 2010; 297:231-43. [PMID: 20831981 DOI: 10.1016/j.canlet.2010.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/17/2010] [Accepted: 05/25/2010] [Indexed: 11/26/2022]
Abstract
A novel pyranoside mimetic compound, DMBO (2-(2,6-difluorophenyl)-5-(4-methoxyphenyl)-1-oxa-3-azaspiro[5.5]undecane), was designed and synthesized. The sugar mimicking behavior of DMBO was addressed by its ability to bind several growth factors/cytokines such as vascular endothelial growth factor (VEGF), heparin-binding epidermal growth factor-like growth factor (HB-EGF), and tumor necrosis factor (TNF)-α as demonstrated by the recently developed surface plasmon resonance assay. DMBO exhibited strong anti-proliferation activity in vitro against tumor cells including a highly metastatic murine osteosarcoma cell line LM8G7 that secretes VEGF as well as two human ovarian cell lines, OVSAHO and SKOV-3, which secrete TNF-α and HB-EGF respectively. Furthermore, DMBO inhibited the metastatic activity to the mouse liver of LM8G7 cells injected from a lateral tail vein, and affected the heparan-degrading activity of LM8G7 cells. Here, we report that DMBO acts as a human heparanase inhibitor in vitro possibly as a substrate mimetic. DMBO also inhibited the migration and invasion of LM8G7 cells and angiogenic events such as endothelial cell proliferation, migration and capillary tube-like formation in vitro. More prominently, the administration of DMBO with heparin resulted in synergistic anti-tumor effects in mouse modelofosteosarcoma. These preclinical data shows the potential anti-cancer effects of DMBO.
Collapse
Affiliation(s)
- Basappa
- Laboratory of Proteoglycan Signaling and Therapeutics, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- G David Roodman
- University of Pittsburgh, School of Medicine/Hematology-Oncology, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Hagiwara K, Kondoh Y, Ueda A, Yamada K, Goto H, Watanabe T, Nakata T, Osada H, Aida Y. Discovery of novel antiviral agents directed against the influenza A virus nucleoprotein using photo-cross-linked chemical arrays. Biochem Biophys Res Commun 2010; 394:721-7. [DOI: 10.1016/j.bbrc.2010.03.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 01/17/2023]
|
14
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
15
|
Wu M, Long S, Frutos AG, Eichelberger M, Li M, Fang Y. Interrogation of phosphor-specific interaction on a high-throughput label-free optical biosensor system-Epic system. J Recept Signal Transduct Res 2009; 29:202-10. [PMID: 19640222 DOI: 10.1080/10799890903068474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Epic system, a high-throughput label-free optical biosensor system, is applied for the biochemical interrogation of phosphor-specific interactions of the 14-3-3 protein and its substrates. It has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. A perspective of biochemical applications for diagnostics and biomarker discovery, as well as cell-based applications for endogenous receptors and viral infection characterization, are also provided.
Collapse
Affiliation(s)
- Meng Wu
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
16
|
Miyazaki I, Simizu S, Ishida K, Osada H. On-Chip Fragment-Based Approach for Discovery of High-Affinity Bivalent Inhibitors. Chembiochem 2009; 10:838-43. [DOI: 10.1002/cbic.200800704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|