1
|
Eaglesfield R, Fernandez-Vizarra E, Lacko E, Caldwell ST, Sloan NL, Siciarz D, Hartley RC, Tokatlidis K. Sub-organellar mitochondrial hydrogen peroxide observed using a SNAP tag targeted coumarin-based fluorescent reporter. Redox Biol 2025; 80:103502. [PMID: 39864323 PMCID: PMC11802384 DOI: 10.1016/j.redox.2025.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Mitochondria are major sites of reactive oxygen species (ROS) production within cells. ROS are important signalling molecules, but excessive production can cause cellular damage and dysfunction. It is therefore crucial to accurately determine when, how and where ROS are produced within mitochondria. Previously, ROS detection involved various chemical probes and fluorescent proteins. These have limitations due to accumulation of the molecules only in the mitochondrial matrix, or the need for a new protein to be expressed for every different species. We report dynamic H2O2 flux changes within all mitochondrial sub-compartments with striking spatial resolution. We combined specific targeting of self-labeling proteins with novel H2O2-reactive probes. The approach is broad-ranging and flexible, with the same expressed proteins loadable with different dyes and sensors. It provides a framework for concomitant analysis of other chemical species, beyond ROS, whose dynamics within mitochondria are yet unknown, without needing to engineer new proteins.
Collapse
Affiliation(s)
- Ross Eaglesfield
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK; National Renewable Energy Laboratory, Golden, CO, USA
| | - Erika Fernandez-Vizarra
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK; Department of Biochemistry and Molecular and Cellular Biology, Faculty of Health and Sport Sciences, University of Zaragoza, 22002, Spain
| | - Erik Lacko
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK
| | | | - Nikki L Sloan
- School of Chemistry, University of Glasgow, G12 8QQ, UK
| | - Daniel Siciarz
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK
| | | | - Kostas Tokatlidis
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
Jothi D, Iyer SK. A highly sensitive naphthalimide based fluorescent “turn-on” sensor for H2S and its bio-imaging applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021; 50:7436-7495. [PMID: 34075930 PMCID: PMC8763210 DOI: 10.1039/d0cs01096k] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.
Collapse
Affiliation(s)
- Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
5
|
Pang B, Liao R, Tang Z, Guo S, Wu Z, Liu W. Caerulomycin and collismycin antibiotics share a trans-acting flavoprotein-dependent assembly line for 2,2'-bipyridine formation. Nat Commun 2021; 12:3124. [PMID: 34035275 PMCID: PMC8149447 DOI: 10.1038/s41467-021-23475-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
Linear nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) template the modular biosynthesis of numerous nonribosomal peptides, polyketides and their hybrids through assembly line chemistry. This chemistry can be complex and highly varied, and thus challenges our understanding in NRPS and PKS-programmed, diverse biosynthetic processes using amino acid and carboxylate building blocks. Here, we report that caerulomycin and collismycin peptide-polyketide hybrid antibiotics share an assembly line that involves unusual NRPS activity to engage a trans-acting flavoprotein in C-C bond formation and heterocyclization during 2,2'-bipyridine formation. Simultaneously, this assembly line provides dethiolated and thiolated 2,2'-bipyridine intermediates through differential treatment of the sulfhydryl group arising from L-cysteine incorporation. Subsequent L-leucine extension, which does not contribute any atoms to either caerulomycins or collismycins, plays a key role in sulfur fate determination by selectively advancing one of the two 2,2'-bipyridine intermediates down a path to the final products with or without sulfur decoration. These findings further the appreciation of assembly line chemistry and will facilitate the development of related molecules using synthetic biology approaches.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhuhua Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China. .,Huzhou Center of Bio-Synthetic Innovation, Huzhou, China.
| |
Collapse
|
6
|
Cheng W, Xue X, Gan L, Jin P, Zhang B, Guo M, Si J, Du H, Chen H, Fang J. Individual and successive detection of H 2S and HClO in living cells and zebrafish by a dual-channel fluorescent probe with longer emission wavelength. Anal Chim Acta 2021; 1156:338362. [PMID: 33781461 DOI: 10.1016/j.aca.2021.338362] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS) and reactive sulfur species (RSS) participate in many physiological activities and help maintaining the redox homeostasis in biological system. The complicated intrinsic connection between specific ROS/RSS needs to be further explored. Herein, a novel fluorescent probe (MB-NAP-N3) with longer emission wavelength has been rationally designed and synthesized based on the conjugation of the methylene blue moiety and the naphthalimide moiety for the detection of hypochlorous acid (HClO) and hydrogen sulfide (H2S). The dual-signal probe exhibits rapid turn-on fluorescence responses for individual and successive detection of H2S and HClO in green and red channels, respectively. Owning to its advantages such as fast response, good selectivity and high sensitivity, the probe was successfully applied to detect endogenous and exogenous HClO/H2S in living cells. Furthermore, the outstanding luminescence performance makes it suitable for the visualization of the in vivo interaction between the two analytes in zebrafish.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xuqi Xue
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peng Jin
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Menghuan Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430071, China.
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Li Z, Huang S, He Y, Duan Q, Zheng G, Jiang Y, Cai L, Jia Y, Zhang H, Ho D. AND logic gate based fluorescence probe for simultaneous detection of peroxynitrite and hypochlorous acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118073. [PMID: 31978691 DOI: 10.1016/j.saa.2020.118073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Hypochlorous acid (HOCl) and peroxynitrite (ONOO-) are two of the most important reactive species and associated with various diseases in various physiological and pathological processes. Nonetheless, many of their roles are still vague due to the shortage of methods for simultaneously detecting HOCl and ONOO-. Herein, three simple yet useful fluorogenic probes, LG-1, LG-2 and LG-3, have been fabricated with facile synthesis route and used to monitor the coexistence of HOCl and ONOO- as AND-based logic gate fluorescent probe firstly. LG-1 and LG-2, which consists of 1,3-oxathiolane group and boronate group respectively, were designed to verify the capacity of monitoring HOCl and ONOO- without interference from each other. The result showed that these two groups are perfect reaction sites of detecting HOCl and ONOO- respectively via specific analyte-induced reactions. Hence, LG-3, which is attached by these two groups to suppress the fluorophore core, can response to HOCl and ONOO- simultaneously without mutual interference and generate the significant time-dependent fluorescence enhancement. By investigating the absorption and fluorescence properties of LG-3 towards HOCl and ONOO- individually and collectively, the result confirmed clearly that LG-3 has the capacity of monitoring the coexistence of HOCl and ONOO-, which could act as a two-input AND-based logic gate fluorescent probe.
Collapse
Affiliation(s)
- Zejun Li
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shumei Huang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yong He
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qinya Duan
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yin Jiang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lili Cai
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yongguang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Huang H, Ji X, Jiang Y, Zhang C, Kang X, Zhu J, Sun L, Yi L. NBD-based fluorescent probes for separate detection of cysteine and biothiols via different reactivities. Org Biomol Chem 2020; 18:4004-4008. [DOI: 10.1039/d0ob00040j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A NBD-based fluorescent probe is developed to seperately detect Cys and all biothiols via different reactivity.
Collapse
Affiliation(s)
- Haojie Huang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yaqing Jiang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Changyu Zhang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xueying Kang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiqin Zhu
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Long Yi
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
9
|
Vargas DF, Larghi EL, Kaufman TS. First total synthesis of ampullosine, a unique isoquinoline alkaloid isolated from Sepedonium ampullosporum, and of the related permethylampullosine. RSC Adv 2019; 9:33096-33106. [PMID: 35529133 PMCID: PMC9073199 DOI: 10.1039/c9ra06839b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/07/2019] [Indexed: 12/02/2022] Open
Abstract
A straightforward and convenient approach toward the first total synthesis of ampullosine, a structurally unique 3-methylisoquinoline alkaloid isolated from Sepedonium ampullosporum, is reported. Access to the related O-methyl ampullosine methyl ester from a common intermediate is also disclosed. The synthetic sequence toward the natural product comprised a Kolbe-type carboxylation of 3,5-dihydroxybenzoic acid and further esterification of the diacid, followed by masking of one of the phenols through selective ester reduction and subsequent acetonide formation. Installation of the three-carbon atom required for the 3-methylpyridine ring was performed by triflation of the remaining free phenol and a Pd-catalyzed Suzuki-Miyaura reaction with potassium E-propenyltrifluoroborate. Deprotection of the acetonide, followed by partial oxidation of the benzylic alcohol to the salicylaldehyde, O-methylation of the free phenol and hydrazonation of the resulting ortho-anisaldehyde derivative gave a hydrazone-based 1-azatriene. This was further subjected to 6π-azaelectrocyclization to afford permethylampullosine (11 steps, 14% overall yield), whereas exhaustive demethylation with AlI3 generated in situ gave ampullosine (12 steps, 3.2% global yield).
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| |
Collapse
|
10
|
Xie Y, Huang H, Ismail I, Sun H, Yi L, Xi Z. A fluorogenic H2S-triggered prodrug based on thiolysis of the NBD amine. Bioorg Med Chem Lett 2019; 29:126627. [DOI: 10.1016/j.bmcl.2019.126627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023]
|
11
|
Jia X, Li W, Guo Z, Guo Z, Li Y, Zhang P, Wei C, Li X. An NBD‐Based Mitochondrial Targeting Ratiometric Fluorescent Probe for Hydrogen Sulfide Detection. ChemistrySelect 2019. [DOI: 10.1002/slct.201901991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xu Jia
- Key Laboratory of Chemical Biology of Hebei ProvinceCollege of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of EducationHebei University Baoding 071002 P. R. China
| | - Wei Li
- Key Laboratory of Chemical Biology of Hebei ProvinceCollege of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
| | - Zihan Guo
- Key Laboratory of Chemical Biology of Hebei ProvinceCollege of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
| | - Zhenbo Guo
- Key Laboratory of Chemical Biology of Hebei ProvinceCollege of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
| | - Yin Li
- Key Laboratory of Chemical Biology of Hebei ProvinceCollege of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
| | - Pingzhu Zhang
- Key Laboratory of Chemical Biology of Hebei ProvinceCollege of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of EducationHebei University Baoding 071002 P. R. China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei ProvinceCollege of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of EducationHebei University Baoding 071002 P. R. China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei ProvinceCollege of Chemistry and Environmental ScienceHebei University Baoding 071002 P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of EducationHebei University Baoding 071002 P. R. China
| |
Collapse
|
12
|
Chalansonnet V, Lowe J, Orenga S, Perry JD, Robinson SN, Stanforth SP, Sykes HE, Truong TV. Fluorogenic 7-azidocoumarin and 3/4-azidophthalimide derivatives as indicators of reductase activity in microorganisms. Bioorg Med Chem Lett 2019; 29:2354-2357. [PMID: 31196712 DOI: 10.1016/j.bmcl.2019.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
A series of fluorogenic heterocyclic azides were prepared and assessed as reductase substrates across a selection of Gram-negative and Gram-positive microorganisms. The majority of these azides showed similar activity profiles to nitroreductase substrates. Microorganisms that do not produce hydrogen sulfide reduced the azides, indicating reductase activity was not linked to hydrogen sulfide production.
Collapse
Affiliation(s)
- Valerie Chalansonnet
- Research & Development Microbiology, bioMérieux SA, 3 route de Port Michaud, 38 390 La-Balme-les-Grottes, France
| | - John Lowe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Sylvain Orenga
- Research & Development Microbiology, bioMérieux SA, 3 route de Port Michaud, 38 390 La-Balme-les-Grottes, France
| | - John D Perry
- Department of Microbiology, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Shaun N Robinson
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Stephen P Stanforth
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hannah E Sykes
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Thang V Truong
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
13
|
Zhang C, Zhang QZ, Zhang K, Li LY, Pluth MD, Yi L, Xi Z. Dual-biomarker-triggered fluorescence probes for differentiating cancer cells and revealing synergistic antioxidant effects under oxidative stress. Chem Sci 2019; 10:1945-1952. [PMID: 30931093 PMCID: PMC6399676 DOI: 10.1039/c8sc03781g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2S) and human NAD(P)H:quinine oxidoreductase 1 (hNQO1) are potential cancer biomarkers and also vital participants in cellular redox homeostasis. Simultaneous detection of these two biomarkers would benefit the diagnostic precision of related cancers and could also help to investigate their crosstalk in response to oxidative stress. Despite this importance, fluorescent probes that can be activated by the dual action of H2S detection and hNQO1 activity have not been investigated. To this end, dual-biomarker-triggered fluorescent probes 1 and 2 were rationally constructed by installing two chemoselective triggering groups into one fluorophore. Probe 1 provides a small turn-on fluorescence response toward H2S but a much larger response to both H2S and hNQO1 in tandem. By contrast, fluorescence probe 2 is activated only in the presence of both H2S and hNQO1. Probe 2 exhibits a large fluorescence turn-on (>400 fold), high sensitivity, excellent selectivity as well as good biocompatibility, enabling the detection of both endogenous H2S and hNQO1 activity in living cells. Bioimaging results indicated that probe 2 could differentiate HT29 and HepG2 cancer cells from HCT116, FHC and HeLa cells owing to the existence of relatively high endogenous levels of both biomarkers. Expanded investigations using 2 revealed that cells could generate more endogenous H2S and hNQO1 upon exposure to exogenous hydrogen peroxide (H2O2), implying the synergistic antioxidant effects under conditions of cellular oxidative stress.
Collapse
Affiliation(s)
- Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology (BUCT) , 15 Beisanhuan East Road, Chaoyang District , Beijing 100029 , China .
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Michael D Pluth
- Materials Science Institute , Institute of Molecular Biology , Department of Chemistry and Biochemistry , University of Oregon , Eugene , OR 97403 , USA
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology (BUCT) , 15 Beisanhuan East Road, Chaoyang District , Beijing 100029 , China .
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry , National Pesticide Engineering Research Center (Tianjin) , Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , China .
| |
Collapse
|
14
|
Jiang Y, Ji X, Zhang C, Xi Z, Sun L, Yi L. Dual-quenching NBD-based fluorescent probes for separate detection of H2S and Cys/Hcy in living cells. Org Biomol Chem 2019; 17:8435-8442. [DOI: 10.1039/c9ob01535c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dual-quenching fluorescent probes based on thiolysis of NBD thioether/ether/amine for fast and separate detection of H2S and Cys/Hcy in living cells were rationally constructed.
Collapse
Affiliation(s)
- Yaqing Jiang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin
- China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin
- China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
| |
Collapse
|
15
|
Ismail I, Wang D, Wang D, Niu C, Huang H, Yi L, Xi Z. A mitochondria-targeted red-emitting probe for imaging hydrogen sulfide in living cells and zebrafish. Org Biomol Chem 2019; 17:3389-3395. [DOI: 10.1039/c8ob03219j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A mitochondria-targeted red-emitting probe is designed and prepared for H2S detection in living cells and zebrafish.
Collapse
Affiliation(s)
- Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Dan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Dawei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Cuili Niu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
16
|
Dong Y, Wang L, Wang F, Li N, Jin Y, Zhang J, Yang X. An etching based fluorescent probe for sensitive detection of hydrogen sulfide in cells. Analyst 2018; 142:4703-4707. [PMID: 29168848 DOI: 10.1039/c7an01394a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogen sulfide (H2S) is one of the most crucial gas signaling agents that mediate many physiological and pathological processes. However, rapid high-efficiency detection and imaging of H2S in living cells is very challenging. Herein we reported a simple fluorescent nanoprobe using FAM-DNA/AgNP nanocomposites for fast and sensitive H2S detection based on surface silver displacement. In contrast to the conventional principles for fluorescence turn-on analyte detection, the present work demonstrated a sensitive and selective AgNP based optosensor for the assay of H2S. Compared with the majority of the reported H2S probes, complex synthesis procedures and costly equipment are not involved in this assay.
Collapse
Affiliation(s)
- Yali Dong
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kaushik R, Ghosh A, Singh A, Jose DA. Colorimetric sensor for the detection of H2S and its application in molecular half-subtractor. Anal Chim Acta 2018; 1040:177-186. [DOI: 10.1016/j.aca.2018.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/18/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
|
18
|
Sun L, Jiang Y, Zhang C, Ji X, Lv D, Xi Z, Yi L. A NBD-S-rhodamine dyad for dual-color discriminative imaging of biothiols and Cys/Hcy. NEW J CHEM 2018. [DOI: 10.1039/c8nj02323a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent probe based on fast thiolysis of NBD thioether is developed for dual-color discriminative imaging of Cys and GSH.
Collapse
Affiliation(s)
- Lu Sun
- Tianjin Key Laboratory on Technologies Enabling
- Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin
| | - Yaqing Jiang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing Key Laboratory of Energy Environmental Catalysis
- Beijing University of Chemical Technology
- Beijing
- China
| | - Changyu Zhang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing Key Laboratory of Energy Environmental Catalysis
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling
- Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin
| | - Dequn Lv
- State Key Laboratory of Organic–Inorganic Composites
- Beijing Key Laboratory of Energy Environmental Catalysis
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry
- Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Nankai University
- Tianjin
| | - Long Yi
- State Key Laboratory of Organic–Inorganic Composites
- Beijing Key Laboratory of Energy Environmental Catalysis
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
19
|
Design and synthesis of NBD-S-dye dyads for fluorescently discriminative detection of biothiols and Cys/Hcy. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Ding L, Li T, Li J, Song W. Azobenzene-Incorporated Single- and Double-Stranded Polynorbornenes: Facile Synthesis and Diverse Photoresponsive Property. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Ding
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
- Department of Chemistry; National Taiwan University; Taipei 106 Taiwan
| | - Tianjing Li
- School of Automotive Engineering; Yancheng Vocational Institute of Industry Technology; Yancheng 224005 China
| | - Juan Li
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Wei Song
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| |
Collapse
|
21
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
22
|
Tang Y, Jiang GF. A novel two-photon fluorescent probe for hydrogen sulfide in living cells using an acedan–NBD amine dyad based on FRET process with high selectivity and sensitivity. NEW J CHEM 2017. [DOI: 10.1039/c7nj01080j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first NBD amine based two-photon fluorescence probe L using a FRET strategy was developed for the H2S detecting in vitro and in vivo. The probe L not only afforded high selectivity and sensitivity for H2S detecting, but also dispalyed a linear response to H2S with a low detection limit 24 nM.
Collapse
Affiliation(s)
- Yao Tang
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Guo-Fang Jiang
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
23
|
Yi L, Xi Z. Thiolysis of NBD-based dyes for colorimetric and fluorescence detection of H2S and biothiols: design and biological applications. Org Biomol Chem 2017; 15:3828-3839. [DOI: 10.1039/c7ob00332c] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H2S-specific fluorescent/colorimetric probes based on the thiolysis of NBD dyes are summarized.
Collapse
Affiliation(s)
- Long Yi
- State Key Laboratory of Organic–Inorganic Composites and Beijing Key Laboratory of Energy Environmental Catalysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
24
|
Debieu S, Romieu A. In situ formation of pyronin dyes for fluorescence protease sensing. Org Biomol Chem 2017; 15:2575-2584. [DOI: 10.1039/c7ob00370f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cutting-edge strategy for fluorogenic sensing of proteases (leucine aminopeptidase for the proof of concept) and based on the “covalent-assembly” principle is reported. Non-fluorescent mixed bis-aryl ethers are readily converted into a fluorescent pyronin through a domino process triggered by the peptide bond cleavage event caused by the targeted enzyme.
Collapse
Affiliation(s)
- Sylvain Debieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| |
Collapse
|
25
|
A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective and Sensitive Detection of H2S: Synthesis, Spectra and Bioimaging. Sci Rep 2016; 6:30148. [PMID: 27440747 PMCID: PMC4954965 DOI: 10.1038/srep30148] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/27/2016] [Indexed: 11/08/2022] Open
Abstract
Hydrogen sulfide (H2S) is an important signalling molecule with multiple biological functions. The reported H2S fluorescent probes are majorly based on redox or nucleophilic reactions. The combination usage of both redox and nucleophilic reactions could improve the probe's selectivity, sensitivity and stability. Herein we report a new dual-reactable probe with yellow turn-on fluorescence for H2S detection. The sensing mechanism of the dual-reactable probe was based on thiolysis of NBD (7-nitro-1,2,3-benzoxadiazole) amine (a nucleophilic reaction) and reduction of azide to amine (a redox reaction). Compared with its corresponding single-reactable probes, the dual-reactable probe has higher selectivity and fluorescence turn-on fold with magnitude of multiplication from that of each single-reactable probe. The highly selective and sensitive properties enabled the dual-reactable probe as a useful tool for efficiently sensing H2S in aqueous buffer and in living cells.
Collapse
|
26
|
Song F, Li Z, Li J, Wu S, Qiu X, Xi Z, Yi L. Investigation of thiolysis of NBD amines for the development of H2S probes and evaluating the stability of NBD dyes. Org Biomol Chem 2016; 14:11117-11124. [DOI: 10.1039/c6ob02354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colorimetric and fluorescent turn-on probes based on thiolysis of NBD ether were explored for selective detection of H2S.
Collapse
Affiliation(s)
- Fanbo Song
- Tianjin Key Laboratory of Water Resources and Environment
- Tianjin Normal University
- Tianjin 300387
- China
| | - Zhifei Li
- State Key Laboratory of Organic-Inorganic Composites and College of Information Science and Technology
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Jiayuan Li
- State Key Laboratory of Organic-Inorganic Composites and College of Information Science and Technology
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Shuai Wu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Xianbo Qiu
- State Key Laboratory of Organic-Inorganic Composites and College of Information Science and Technology
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and College of Information Science and Technology
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| |
Collapse
|