1
|
Rao RS, Rao GH, Venkateswararao A, Nizamuddin S, Narayanaswamy K, Singh SP. Organic BODIPY Based Gels: Optical, Electrochemical and Self-Assembly Properties. Chem Asian J 2024:e202400807. [PMID: 39511750 DOI: 10.1002/asia.202400807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Two novel BODIPY dyes, BOC3 and BC12, were synthesized with variable alkyl chains at terminal amide functional units. BC12, featuring a longer alkyl chain (-C12H25), formed a gel compared to BOC3, which has a shorter alkyl chain (< C->CH2OCH3), due to supra molecular self-assembly in film. Both dyes exhibited absorption peaks around 530 nm in the visible region, with a red shift of about 30 nm in the film state, essential for organic electronic applications. Concentration variation studies revealed π-π stacking/aggregates in the solid state causing red shifts in absorption and emission. BC12 exhibited more significant red shifts in film compared to its solution state due to supra molecular self-assembly. Electronic structure analysis using density functional theories (BMK and O3LYP) showed better correlation with absorption using the O3LYP method. Both dyes displayed quasi-irreversible oxidation and reduction couples with suitable HOMO (5.46 eV) and LUMO (3.32 eV) energy levels for organic electronic applications. Transient photoluminescence studies indicated a longer lifetime for BC12 (5.28 ns) than BOC3 (4.50 ns), suggesting π-π aggregation and supra molecular self-assembly. BC12's gelation, attributed to its long alkyl chain and two-dimensional motifs of the BODIPY core, forms spherical-shaped nano networks. These findings underscore the potential of molecularly tuned dyes with alkyl chains for nano-sized self-assembly in organic electronic devices. Red shifts were observed due to combination of aggregation, stacking and columnar meso-phase formation in supramolecular assembly. Absorption spectra of dyes in toluene with various concentrations showed the formation of Aggregation/π-π stacking might be due to head to tailing interactions.
Collapse
Affiliation(s)
- Ravulakollu Srinivasa Rao
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Chemistry, Khalifa University, P.O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - G Hanumantha Rao
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Addanki Venkateswararao
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad, 500 007, India
| | - Shaik Nizamuddin
- Department of Chemistry, SRM University - AP, Amaravathi, Andhra Pradesh, India, 522 240
| | - Kamatham Narayanaswamy
- Department of Chemistry, SRM University - AP, Amaravathi, Andhra Pradesh, India, 522 240
| | - Surya Prakash Singh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Shao S, Gobeze HB, De Silva IW, Schaffner J, Verbeck G, Karr PA, D'Souza F. Photoinduced Energy and Electron Transfer in a 'Two-Point' Bound Panchromatic, Near-Infrared-Absorbing Bis-styrylBODIPY(Zinc Porphyrin) 2 - Fullerene Self-Assembled Supramolecular Conjugate. Chemistry 2024; 30:e202401892. [PMID: 38857115 DOI: 10.1002/chem.202401892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Structurally well-defined self-assembled supramolecular multi-modular donor-acceptor conjugates play a significant role in furthering our understanding of photoinduced energy and electron transfer events occurring in nature, e. g., in the antenna-reaction centers of photosynthesis and their applications in light energy harvesting. However, building such multi-modular systems capable of mimicking the early events of photosynthesis has been synthetically challenging, causing a major hurdle for its growth. Often, multi-modularity is brought in by combining both covalent and noncovalent approaches. In the present study, we have developed such an approach wherein a π-extended conjugated molecular cleft, two zinc(II)porphyrin bearing bisstyrylBODIPY (dyad, 1), has been synthesized. The binding of 1 via a 'two-point' metal-ligand coordination of a bis-pyridyl fulleropyrrolidine (2), forming a stable self-assembled supramolecular complex (1 : 2), has been established. The self-assembled supramolecular complex has been fully characterized by a suite of physico-chemical methods, including TD-DFT studies. From the established energy diagram, both energy and electron transfer events were envisioned. In dyad 1, selective excitation of zinc(II)porphyrin leads to efficient singlet-singlet excitation transfer to (bisstyrly)BODIPY with an energy transfer rate constant, kEnT of 2.56×1012 s-1. In complex 1 : 2, photoexcitation of zinc(II)porphyrin results in ultrafast photoinduced electron transfer with a charge separation rate constant, kCS of 2.83×1011 s-1, and a charge recombination rate constant, kCR of 2.51×109 s-1. For excitation at 730 nm corresponding to bisstyrylBODIPY, similar results are obtained, where a biexponential decay yielded estimated values of kCS 3.44×1011 s-1 and 2.97×1010 s-1, and a kCR value of 2.10×1010 s-1. The newly built self-assembled supramolecular complex has been shown to successfully mimic the early events of the photosynthetic antenna-reaction center events.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| | - Habtom B Gobeze
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| | - Imesha W De Silva
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| | - Jacob Schaffner
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| | - Guido Verbeck
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA, 0912, U.S.A
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska, 68787, U.S.A
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| |
Collapse
|
3
|
Kazemi S, Alsaleh AZ, Karr PA, D'Souza F. Multimodular Wide-Band Capturing Nanohybrids: Role of Carbon Nanotubes in Slowing Charge Recombination in Supramolecular C 60-BisstyrylBODIPY-(Zinc Porphyrin) 2 Donor-Acceptor Molecular Cleft. J Am Chem Soc 2024; 146:13509-13518. [PMID: 38710108 DOI: 10.1021/jacs.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The importance of diameter-sorted single-wall carbon nanotubes (SWCNTs) noncovalently bound to a donor-acceptor molecular cleft, 1, in prolonging the lifetime of charge-separated states is successfully demonstrated. For this, using a multistep synthetic procedure, a wide-band capturing, multimodular, C60-bisstyrylBODIPY-(zinc porphyrin)2, molecular cleft 1, was newly synthesized and shown to bind diameter-sorted SWCNTs. The molecular cleft and its supramolecular assemblies were characterized by a suite of physicochemical techniques. Free-energy calculations suggested that both the (6,5) and (7,6) SWCNTs bound to 1 act as hole acceptors during the photoinduced sequential electron transfer events. Consequently, selective excitation of 1 in 1:SWCNT hybrids revealed a two-step electron transfer, leading to the formation of charge-separated states. Due to the distant separation of the cation and anion radical species within the supramolecules, improved lifetimes of the charge-separated states could be achieved. The present supramolecular strategy of improving charge separation involving SWCNTs and donor-acceptor molecular clefts highlights the potential application of these hybrid materials for various light energy harvesting and optoelectronic applications.
Collapse
Affiliation(s)
- Shahrzad Kazemi
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska 68787, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
4
|
Ileperuma CV, Garcés-Garcés J, Shao S, Fernández-Lázaro F, Sastre-Santos Á, Karr PA, D'Souza F. Panchromatic Light-Capturing Bis-styryl BODIPY-Perylenediimide Donor-Acceptor Constructs: Occurrence of Sequential Energy Transfer Followed by Electron Transfer. Chemistry 2023; 29:e202301686. [PMID: 37428999 DOI: 10.1002/chem.202301686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Two wide-band-capturing donor-acceptor conjugates featuring bis-styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the 1 PDI* to BODIPY, and a subsequent electron transfer from the 1 BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground-state interactions between the donor and acceptor entities. Steady-state fluorescence and excitation spectral recordings provided evidence of singlet-singlet energy transfer in these dyads, and quenched fluorescence of bis-styrylBODIPY emission in the dyads suggested additional photo-events. The facile oxidation of bis-styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1 and S2 states, derived from time-dependent DFT calculations, supported excited charge transfer in these dyads. Spectro-electrochemical studies on one-electron-oxidized and one-electron-reduced dyads and the monomeric precursor compounds were also performed in a thin-layer optical cell under corresponding applied potentials. From this study, both bis-styrylBODIPY⋅+ and PDI⋅- could be spectrally characterizes and were subsequently used in characterizing the electron-transfer products. Finally, pump-probe spectral studies were performed in dichlorobenzene under selective PDI and bis-styrylBODIPY excitation to secure energy and electron-transfer evidence. The measured rate constants for energy transfer, kENT , were in the range of 1011 s-1 , while the electron transfer rate constants, kET , were in the range of 1010 s-1 , thus highlighting their potential use in solar energy harvesting and optoelectronic applications.
Collapse
Affiliation(s)
- Chamari V Ileperuma
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - José Garcés-Garcés
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Shuai Shao
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska, 68787, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
5
|
Rabah J, Yonkeu L, Wright K, Vallée A, Méallet-Renault R, Ha-Thi MH, Fatima A, Clavier G, Fensterbank H, Allard E. Synthesis of a dual clickable fullerene platform and construction of a dissymmetric BODIPY-[60]Fullerene-DistyrylBODIPY triad. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
7
|
Synthesis and photoinduced charge stabilization in molecular tetrads featuring covalently linked triphenylamine-oligothiophene-BODIPY-C60. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Benitz A, Thomas MB, Silva I, Nesterov VN, Verbeck GF, D'Souza F. Photoinduced Electron Transfer in Axially Coordinated Supramolecular Zinc Tetrapyrrole Bis(styryl)BODIPY Donor‐Acceptor Conjugates. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alejandro Benitz
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Michael B. Thomas
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Imesha Silva
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Vladimir N. Nesterov
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Guido F. Verbeck
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| |
Collapse
|
9
|
|
10
|
Triplet BODIPY and AzaBODIPY Derived Donor‐acceptor Dyads: Competitive Electron Transfer versus Intersystem Crossing upon Photoexcitation. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Gangada S, Chakali M, Mandal H, Duvva N, Chitta R, Lingamallu G, Bangal PR. Excitation-dependent electron exchange energy and electron transfer dynamics in a series of covalently tethered N,N-bis(4'-tert-butylbiphenyl-4-yl)aniline - [C 60] fullerene dyads via varying π-conjugated spacers. Phys Chem Chem Phys 2018; 20:21352-21367. [PMID: 30095832 DOI: 10.1039/c8cp03521k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond time-resolved fluorescence and transient absorption studies are reported for three newly synthesized covalently linked N,N-bis(4'-tert-butylbiphenyl-4-yl)aniline (BBA) and pyrrolidinofullerenes (C60)-based donor-π conjugated bridge-acceptor dyads (D-B-A) as functions of the bridge length (7.1, 9.5 and 11.2 Å for Dyad-1, Dyad-2 and Dyad-3), dielectric constants of the medium and pump wavelengths. In polar solvent, ultrafast fluorescence quenching (kEET ≥ 2 × 1012 s-1) of the BBA moiety upon excitation of the BBA moiety (320 nm) is observed in the dyads and is assigned to a mechanism involving electron exchange energy transfer (EET) from 1BBA* to C60 followed by electron transfer from BBA to 1C60*. Cohesive rise and decay dynamics of conjugated BBA˙+-C60˙- anion pairs confirm the involvement of a distance independent adiabatic charge-separation (CS) process (kCS ≥ 2.2 × 1011 s-1) with near unity quantum efficiency (φCS ≥ 99.7%) and a distance-dependent non-adiabatic charge-recombination (CR) process [kCR ∼ (1010-108) s-1]. In contrast, excitation of the C60 moiety (λex = 430 to 700 nm) illustrates photoinduced electron transfer from BBA to 1C60*, involving non-adiabatic (diabatic) and distance-dependent CS (kCS in the range of 0.59-1.78 × 1011 s-1) with 98.86-99.6% (Dyad-3-Dyad-1) quantum efficiency and a CR process with kCR values [kCR ∼ (1010-108) s-1] up to three orders greater than kCS of the respective dyads. Both the processes, CS and CR, upon C60 excitation and the CR process upon BBA excitation show distance dependent rate constants with exponential factor β ≤ 0.5 Å-1, and electron transfer is concluded to occur through a covalently linked conjugated π bridge. Global and target analysis of fsTA data reveal the occurrence of two closely lying CS states, thermally hot (CShot) and thermally relaxed (CSeq) states, and two CR processes with two orders of different rate constants. Careful analysis of the kinetic and thermodynamic data allowed us to estimate the total reorganization energy and electronic coupling matrix (V), which decrease exponentially with distance. These novel features of the distance independent adiabatic CS process and the distance-dependent diabatic CR process upon donor excitation are due to extending the π-conjugation between BBA and C60. The demonstrated results may provide a benchmark in the design of light-harvesting molecular devices where ultrafast CS processes and long-lived CS states are essential requirements.
Collapse
Affiliation(s)
- Suneel Gangada
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan - 305817, India.
| | | | | | | | | | | | | |
Collapse
|
12
|
Shao S, Thomas MB, Park KH, Mahaffey Z, Kim D, D'Souza F. Sequential energy transfer followed by electron transfer in a BODIPY-bisstyrylBODIPY bound to C 60 triad via a 'two-point' binding strategy. Chem Commun (Camb) 2018; 54:54-57. [PMID: 29206250 DOI: 10.1039/c7cc08063h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitation transfer from 1BODIPY* to bisstyrylBODIPY followed by electron transfer to C60 leading to a charge separated state of appreciable lifetime in a supramolecularly assembled triad is demonstrated, as a mimic of the photosynthetic 'antenna-reaction centre'.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| | | | | | | | | | | |
Collapse
|
13
|
May AK, Stone J, Ngoy BP, Mack J, Nyokong T, Kimura M, Kobayashi N. Photophysical and optical limiting properties of a novel distyryl-BODIPY with fused crown ether moieties. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424617500869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis and characterization of a crown-ether-substituted 3,5-distyrylBODIPY dye with a 4-dimethylaminophenyl group at the meso-position is reported. The optical limiting properties were investigated at 532 nm, and the dye was found to have enhanced reverse saturable absorption responses during z-scan measurements. Theoretical calculations suggest that this may be due to the large dipole moment that is introduced by the benzo-fused crown ether and 4-dimethylaminophenyl substituents.
Collapse
Affiliation(s)
- Aviwe K. May
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Justin Stone
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Bokolombe P. Ngoy
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - John Mack
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Mutsumi Kimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Nagao Kobayashi
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| |
Collapse
|