1
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Kumar P, Mahalakshmi M, Anitha S, Durgadevi S, Govarthanan M. Luminous blue carbon quantum dots employing Anisomeles indica (catmint) induce apoptotic signaling pathway in triple negative breast cancer (TNBC) cells. LUMINESCENCE 2024; 39:e4848. [PMID: 39092486 DOI: 10.1002/bio.4848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Herein, luminous blue carbon quantum dots (CDs) employing Anisomeles indica (Catmint) were reported with imaging, self-targeting, and therapeutic effects on triple-negative breast cancer (TNBC, MDA-MB-231) cells. The salient features of CDs generated from catmint are as follows: i) optical studies confirm CDs with excitation-dependent emission; ii) high-throughput characterization authenticates the formation of CDs with near-spherical shape with diameter ranging between 5 and 15 nm; iii) CDs induce cytotoxicity (3.22 ± 0.64 μg/ml) in triple-negative breast cancer (TNBC, MDA-MB-231) cells; iv) fluorescence microscopy demonstrates that CDs promote apoptosis by increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential; v) CDs significantly up-regulate pro-apoptotic gene expression levels such as caspases-8/9/3. Finally, our work demonstrates that catmint-derived CDs are prospective nanotheranostics that augment cancer targeting and imaging.
Collapse
Affiliation(s)
- Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Marimuthu Mahalakshmi
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Selvaraj Anitha
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sabapathi Durgadevi
- Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Faqihi AA, Keegan N, Šiller L, Hedley J. Effect of Ambient Environment on Laser Reduction of Graphene Oxide for Applications in Electrochemical Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:8002. [PMID: 37766056 PMCID: PMC10536370 DOI: 10.3390/s23188002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Electrochemical sensors play an important role in a variety of applications. With the potential for enhanced performance, much of the focus has been on developing nanomaterials, in particular graphene, for such sensors. Recent work has looked towards laser scribing technology for the reduction of graphene oxide as an easy and cost-effective option for sensor fabrication. This work looks to develop this approach by assessing the quality of sensors produced with the effect of different ambient atmospheres during the laser scribing process. The graphene oxide was reduced using a laser writing system in a range of atmospheres and sensors characterised with Raman spectroscopy, XPS and cyclic voltammetry. Although providing a slightly higher defect density, sensors fabricated under argon and nitrogen atmospheres exhibited the highest average electron transfer rates of approximately 2 × 10-3 cms-1. Issues of sensor reproducibility using this approach are discussed.
Collapse
Affiliation(s)
- Abdullah A. Faqihi
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.A.F.); (L.Š.)
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Neil Keegan
- Translational and Clinical Research Institute, Newcastle upon Tyne NE1 7RU, UK;
| | - Lidija Šiller
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.A.F.); (L.Š.)
| | - John Hedley
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.A.F.); (L.Š.)
| |
Collapse
|
4
|
Hui S. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:68. [DOI: 10.1007/s11051-023-05701-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 01/06/2025]
|
5
|
Rocco D, Moldoveanu VG, Feroci M, Bortolami M, Vetica F. Electrochemical Synthesis of Carbon Quantum Dots. ChemElectroChem 2023; 10:e202201104. [PMID: 37502311 PMCID: PMC10369859 DOI: 10.1002/celc.202201104] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Carbon quantum dots (CDs) are "small" carbon nanostructures with excellent photoluminescence properties, together with low-toxicity, high biocompatibility, excellent dispersibility in water as well as organic solvents. Due to their characteristics, CDs have been studied for a plethora of applications as biosensors, luminescent probes for photodynamic and photothermal therapy, fluorescent inks and many more. Moreover, the possibility to obtain carbon dots from biomasses and/or organic waste has strongly promoted the interest in this class of carbon-based nanoparticles, having a promising impact in the view of circular economy and sustainable processes. Within this context, electrochemistry proved to be a green, practical, and efficient method for the synthesis of high-quality CDs, with the possibility to fine-tune their characteristics by changing operational parameters. This review outlines the principal and most recent advances in the electrochemical synthesis of CDs, focusing on the electrochemical set-up optimization.
Collapse
Affiliation(s)
- Daniele Rocco
- Department of Mechanic and Aerospace EngineeringSapienza University of Romevia Eudossiana Roma, 180084RomeItaly
| | | | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI)Sapienza University of Romevia Castro Laurenziano, 700161RomeItaly
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI)Sapienza University of Romevia Castro Laurenziano, 700161RomeItaly
| | - Fabrizio Vetica
- Department of ChemistrySapienza University of Romepiazzale Aldo Moro, 500185RomeItaly
| |
Collapse
|
6
|
Kurbanoglu S, Cevher SC, Toppare L, Cirpan A, Soylemez S. Electrochemical biosensor based on three components random conjugated polymer with fullerene (C 60). Bioelectrochemistry 2022; 147:108219. [PMID: 35933973 DOI: 10.1016/j.bioelechem.2022.108219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Herein, a conjugated polymer and fullerene bearing architecture-based electrochemical Tyrosinase (Tyr) enzyme inhibition biosensor for indomethacin (INDO) drug active compound has been developed. For this purpose, three moieties of benzoxadiazole, thienopyrroledione, and benzodithiophene containing conjugated polymer; poly[BDT-alt-(TP;BO)] was used as a transducer modifier together with fullerene for catechol detection. The specific combination of these materials is considered an effective way to fabricate highly sensitive and fast response catechol biosensors for the first time. Electrochemical and surface characteristics of the modified electrodes were obtained by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and atomic force microscopy. The effect of the parameters during chronoamperometric measurements on the biosensor response was also studied. Using optimized conditions, biosensing of catechol was achieved between 0.5 and 62.5 µM with a limit of the detection 0.11 µM. Tyr inhibition was followed with INDO drug active compound and it was found that INDO has a mixed type characteristic of enzyme kinetics with an I50 value of 15.11 µM.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sevki Can Cevher
- Department of Engineering Fundamental Sciences, Sivas University of Science and Technology, 58100 Sivas, Turkey
| | - Levent Toppare
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey; Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey; Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Ali Cirpan
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey; Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey; The Center for Solar Energy Research and Application (GUNAM), Middle East Technical University, Ankara 06800, Turkey; Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Saniye Soylemez
- Department of Biomedical Engineering, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
7
|
Huang L, Yu L, Yin X, Lin Y, Xu Y, Niu Y. Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. J Colloid Interface Sci 2022; 622:117-125. [DOI: 10.1016/j.jcis.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022]
|
8
|
He S, Wang X, Xiang G, Lac K, Wang C, Ding Z. Enhanced Electrochemiluminescence of A Macrocyclic Tetradentate Chelate Pt(II) Molecule via Its Collisional Interactions with the Electrode. Chem Asian J 2022; 17:e202200727. [PMID: 35997551 DOI: 10.1002/asia.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Indexed: 11/11/2022]
Abstract
A macrocyclic tetradentate chelate Pt(II) molecule (Pt1) served as an excellent luminophore in electrochemiluminescence (ECL) processes. The blue ECL of Pt1/S2O82- coreactant system in N,N'-dimethylformamide was found to be 46 times higher than that of the Ru(bpy)2+/S2O82- system or 30 times higher than that of the 9,10-diphenylanthracene/S2O82- system. The unprecedented high ECL quantum efficiencies were caused by the cyclic generation of monomer excited states through collisional interactions of Pt1 molecules with the electrode at an elevated frequency. The ECL is tunable from bright blue to pure white by simply changing the solvent from N,N'-dimethylformamide to dichloromethane. The white ECL of Pt(II) molecule was reported for the first time and the mechanism was proposed to be the simultaneous emissions from the monomer excited state (blue) and excimer (red).
Collapse
Affiliation(s)
- Shuijian He
- Nanjing Forestry University, College of Materials Science and Engineering, CHINA
| | | | | | - Kevin Lac
- Western University, Chemistry, CANADA
| | - Changshui Wang
- Nanjing Forestry University, College of Materials Science and Engineering, CHINA
| | - Zhifeng Ding
- University of Western Ontario, Chemistry, 1151 Richmond St, N6A5B7, London, CANADA
| |
Collapse
|
9
|
Bortolami M, Bogles II, Bombelli C, Pandolfi F, Feroci M, Vetica F. Electrochemical Bottom-Up Synthesis of Chiral Carbon Dots from L-Proline and Their Application as Nano-Organocatalysts in a Stereoselective Aldol Reaction. Molecules 2022; 27:molecules27165150. [PMID: 36014401 PMCID: PMC9414281 DOI: 10.3390/molecules27165150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Chirality is undoubtedly a fundamental property of nature since the different interactions of optically active molecules in a chiral environment are essential for numerous applications. Thus, in the field of asymmetric synthesis, the search for efficient, sustainable, cost-effective and recyclable chiral catalysts is still the main challenge in organic chemistry. The field of carbon dots (CDs) has experienced tremendous development in the last 15 years, including their applications as achiral catalysts. Thus, understanding the implications of chirality in CDs chemistry could be of utmost importance to achieving sustainable and biocompatible chiral nanocatalysts. An efficient and cost-effective electrochemical synthetic methodology for the synthesis of L-Proline-based chiral carbon dots (CCDs) and EtOH-derived L-Proline-based chiral carbon dots (CCDs) is herein reported. The electrochemical set-up and reaction conditions have been thoroughly optimised and their effects on CCDs size, photoluminescence, as well as catalytic activity have been investigated. The obtained CCDs have been successfully employed to catalyze an asymmetric aldol reaction, showing excellent results in terms of yield, diastereo- and enantioselectivity. Moreover, the sustainable nature of the CCDs was demonstrated by recycling the catalysts for up to 3 cycles without any loss of reactivity or stereoselectivity.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
| | - Ingrid Izabela Bogles
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
| | - Cecilia Bombelli
- CNR—Institute for Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy
| | - Fabiana Pandolfi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
- CNR—Institute for Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161 Rome, Italy
- Correspondence: (M.F.); (F.V.)
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
- Correspondence: (M.F.); (F.V.)
| |
Collapse
|
10
|
An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Han Y, Ding X, Han J, Fang Y, Jin Z, Kong W, Liu C. Oxygen-regulated carbon quantum dots as an efficient metal-free electrocatalyst for nitrogen reduction. NANOSCALE 2022; 14:9893-9899. [PMID: 35786697 DOI: 10.1039/d2nr01551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An electrocatalytic nitrogen reduction reaction under ambient conditions provides a wonderful blueprint for the conversion of nitrogen to ammonia. However, current research on ammonia synthesis is mainly focused on metal-based catalysts. It is still a great challenge to realize the effective activation of N2 on non-metallic catalysts. Herein, carbon quantum dots are reported to reduce dinitrogen to ammonia under ambient conditions. Benefiting from its numerous defect sites, this metal-free catalyst shows excellent catalytic performance in 0.1 M HCl with a faradaic efficiency of 17.59%. In addition, both experimental and theoretical results confirm that the catalytic performance of the catalyst can be improved by appropriately controlling the oxygen content of samples at different temperatures, and the utmost ammonia yield is 134.08 μg h-1 mg-1cat., which is almost three times higher than that of a reported metal-free material. The proposed oxygen regulation provides a new method to optimize the surface properties of metal-free catalysts for ammonia synthesis.
Collapse
Affiliation(s)
- Yaqian Han
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Xiaoteng Ding
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Jingrui Han
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Yanfeng Fang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Zhaoyong Jin
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Wenhan Kong
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Chuangwei Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
12
|
Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, van der Kuur C, Arjmand M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102683. [PMID: 34549513 DOI: 10.1002/smll.202102683] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Indexed: 05/24/2023]
Abstract
Graphene quantum dot (GQD) is one of the youngest superstars of the carbon family. Since its emergence in 2008, GQD has attracted a great deal of attention due to its unique optoelectrical properties. Non-zero bandgap, the ability to accommodate functional groups and dopants, excellent dispersibility, highly tunable properties, and biocompatibility are among the most important characteristics of GQDs. To date, GQDs have displayed significant momentum in numerous fields such as energy devices, catalysis, sensing, photodynamic and photothermal therapy, drug delivery, and bioimaging. As this field is rapidly evolving, there is a strong need to identify the emerging challenges of GQDs in recent advances, mainly because some novel applications and numerous innovations on the ease of synthesis of GQDs are not systematically reviewed in earlier studies. This feature article provides a comparative and balanced discussion of recent advances in synthesis, properties, and applications of GQDs. Besides, current challenges and future prospects of these emerging carbon-based nanomaterials are also highlighted. The outlook provided in this review points out that the future of GQD research is boundless, particularly if upcoming studies focus on the ease of purification and eco-friendly synthesis along with improving the photoluminescence quantum yield and production yield of GQDs.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ehsan Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Kamkar
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ali Akbari Sehat
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sara Dordanihaghighi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Colin van der Kuur
- ZEN Graphene Solutions, 210-1205 Amber Dr., Thunder Bay, ON, P7B 6M4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
13
|
Yang M, Lian Z, Si C, Jan F, Li B. Revealing the intrinsic relation between heteroatom dopants and graphene quantum dots as a bi-functional ORR/OER catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
15
|
Yang L, De-Jager CR, Adsetts JR, Chu K, Liu K, Zhang C, Ding Z. Analyzing Near-Infrared Electrochemiluminescence of Graphene Quantum Dots in Aqueous Media. Anal Chem 2021; 93:12409-12416. [PMID: 34464100 DOI: 10.1021/acs.analchem.1c02441] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mechanisms of emissions, especially electrochemiluminescence (ECL), for graphene quantum dots (GQDs) are poorly understood, which makes near-infrared (NIR)-emitting GQDs difficult to create. To explore this poorly understood NIR ECL, two GQDs, nitrogen-doped GQDs (GQD-1) and nitrogen- and sulfur-doped ones (GQD-2), were prepared by a simple one-step solvothermal reaction with similar core structures but different surface states. The GQDs were analyzed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Photoluminescence results, with a comparable quantum efficiency of 13% to strong luminophores in aqueous media, suggested a mechanism that the emission mainly depends on the core structure while slightly adjusted by the heteroatom doping. ECL of GQD-2 dispersed in aqueous media with K2S2O8 as the coreactant was measured by means of ECL-voltage curves and ECL spectroscopy, demonstrating strong NIR emissions between 680 and 870 nm, with a high ECL efficiency of 13% relative to that of the Ru(bpy)32+/K2S2O8 system. Interestingly, ECL is generated by surface excited states emitting light at a much longer wavelength in the NIR region. The easily prepared GQD-2 has several advantages such as low cost and quite strong NIR-ECL in aqueous media, with which wide applications in biodetection are anticipated.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Cindy Rae De-Jager
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jonathan Ralph Adsetts
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kenneth Chu
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kehan Liu
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Congyang Zhang
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Hussain A, Rafeeq H, Qasim M, Jabeen Z, Bilal M, Franco M, Iqbal HMN. Engineered tyrosinases with broadened bio-catalysis scope: immobilization using nanocarriers and applications. 3 Biotech 2021; 11:365. [PMID: 34290948 PMCID: PMC8257883 DOI: 10.1007/s13205-021-02913-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Enzyme immobilization is a widely used technology for creating more stable, active, and reusable biocatalysts. The immobilization process also improves the enzyme's operating efficiency in industrial applications. Various support matrices have been designed and developed to enhance the biocatalytic efficiency of immobilized enzymes. Given their unique physicochemical attributes, including substantial surface area, rigidity, semi-conductivity, high enzyme loading, hyper catalytic activity, and size-assisted optical properties, nanomaterials have emerged as fascinating matrices for enzyme immobilization. Tyrosinase is a copper-containing monooxygenase that catalyzes the o-hydroxylation of monophenols to catechols and o-quinones. This enzyme possesses a wide range of uses in the medical, biotechnological, and food sectors. This article summarizes an array of nanostructured materials as carrier matrices for tyrosinase immobilization. Following a detailed background overview, various nanomaterials, as immobilization support matrices, including carbon nanotubes (CNTs), carbon dots (CDs), carbon black (CB), nanofibers, Graphene nanocomposite, platinum nanoparticles, nano-sized magnetic particles, lignin nanoparticles, layered double hydroxide (LDH) nanomaterials, gold nanoparticles (AuNPs), and zinc oxide nanoparticles have been discussed. Next, applied perspectives have been spotlights with particular reference to environmental pollutant sensing, phenolic compounds detection, pharmaceutical, and food industry (e.g., cereal processing, dairy processing, and meat processing), along with other miscellaneous applications.
Collapse
Affiliation(s)
- Asim Hussain
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Hamza Rafeeq
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Qasim
- grid.411727.60000 0001 2201 6036International Islamic University Islamabad, Islamabad, Pakistan
| | - Zara Jabeen
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Bilal
- grid.417678.b0000 0004 1800 1941School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Marcelo Franco
- grid.412324.20000 0001 2205 1915Departament of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | - Hafiz M. N. Iqbal
- grid.419886.a0000 0001 2203 4701Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico
| |
Collapse
|
17
|
Liu G, Gao H, Chen J, Shao C, Chen F. An Ultra‐sensitive Electrochemiluminescent Detection of Carcinoembryonic Antigen Using a Hollowed‐out Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gen Liu
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
- State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
- Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu 476000 China
| | - Hui Gao
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Jiajia Chen
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Congying Shao
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| | - Feifei Chen
- College of Chemistry and Material Science Huaibei Normal University Huaibei 235000 China
| |
Collapse
|
18
|
Ji Z, Liu K, Dai W, Ma D, Zhang H, Shen X, Zhu G, Wu S. High energy density hybrid supercapacitor based on cobalt-doped nickel sulfide flower-like hierarchitectures deposited with nitrogen-doped carbon dots. NANOSCALE 2021; 13:1689-1695. [PMID: 33416821 DOI: 10.1039/d0nr07851d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exploration of advanced electrode materials with outstanding electrochemical properties is of considerable importance for hybrid supercapacitors but challenging. In this paper, an effective two-step solvothermal route is demonstrated to synthesize nitrogen-doped carbon dots (NCDs) decorated cobalt-doped nickel sulfide (Co-NiS) flower-like hierarchitectures. Because of the modification with NCDs and doping by cobalt atoms, the resulting Co-NiS/NCDs hierarchitectures exhibit an ultrahigh specific capacity up to 1240 C g-1 (2480 F g-1) at 1 A g-1 and a remarkable rate capability of 790.8 C g-1 (1581.6 F g-1) even at 20 A g-1 when used as advanced electrodes for supercapacitors. More significantly, coupling with ap-phenylenediamine (PPD) modified reduced graphene oxide (rGO) anode, a hybrid supercapacitor device is successfully constructed, which possesses an impressive energy density of 71.6 W h kg-1 at 712.0 W kg-1 and a decent cyclic stability with 78.3% retention after 12 000 cycles at 5 A g-1. The dual improvement strategy may provide insight to rational engineering of novel electrode materials with multi-components for high-performance hybrid supercapacitors.
Collapse
Affiliation(s)
- Zhenyuan Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Adsetts JR, Hoesterey S, Gao C, Love DA, Ding Z. Electrochemiluminescence and Photoluminescence of Carbon Quantum Dots Controlled by Aggregation-Induced Emission, Aggregation-Caused Quenching, and Interfacial Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14432-14442. [PMID: 33207119 DOI: 10.1021/acs.langmuir.0c02886] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon quantum dots (CQDs) show promise in optoelectronics as a light emitter due to simple synthesis, biocompatibility and strong tunable light emissions. However, CQDs commonly suffer from aggregation caused quenching (ACQ), inhibiting the full potential of these light emitters. Studies into different ideal light emitters have shown enhancements when converting common ACQ effects to aggregation induced emission (AIE) effects. We report CQD synthesis using citric acid and high/low thiourea concentrations, or sample 2/1. These two CQDs exhibited AIE and ACQ PL effects, respectively. CQD characterizations and photoluminescence interrogations of CQD films and solutions revealed that these unique emission mechanisms likely arose from different S incorporations into the CQDs. Furthermore, it was discovered that sample 2 emitted electrochemiluminescence (ECL) more intensely than sample 1 in a homogenous solution with S2O82- as a coreactant, due to aggregation and interactions of CQD species in solution. Very interestingly, sample 1's CQD film|S2O82- system achieved an ECL efficiency of 26% and emitted roughly 26 times more efficiently than sample 2 in the same conditions. Predominant interfacial reactions and surface state emission produced intense white light with a correlated color temperature of 2000 K. Spooling ECL spectroscopy was utilized to investigate emission mechanisms. Sample 2's CQD film|TPrA system had four times higher ECL intensity than that of sample 1, most likely due to π-cation interactions leading to a strong CQD•+ stability, thereby, enhancing ECL. It is anticipated that ECL enhancement of CQD films or solutions by means of AIE will lead to wide CQD optoelectronic applications.
Collapse
Affiliation(s)
- Jonathan Ralph Adsetts
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Salena Hoesterey
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Chenjun Gao
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - David A Love
- Rosstech Signal Inc., 71 15th Line South, Orillia, Ontario L3 V 6H1, Canada
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
20
|
Abstract
Carbon nanomaterials offer unique opportunities for the assembling of electrochemical aptasensors due to their high electroconductivity, redox activity, compatibility with biochemical receptors and broad possibilities of functionalization and combination with other auxiliary reagents. In this review, the progress in the development of electrochemical aptasensors based on carbon nanomaterials in 2016–2020 is considered with particular emphasis on the role of carbon materials in aptamer immobilization and signal generation. The synthesis and properties of carbon nanotubes, graphene materials, carbon nitride, carbon black particles and fullerene are described and their implementation in the electrochemical biosensors are summarized. Examples of electrochemical aptasensors are classified in accordance with the content of the surface layer and signal measurement mode. In conclusion, the drawbacks and future prospects of carbon nanomaterials’ application in electrochemical aptasensors are briefly discussed.
Collapse
|
21
|
Baluta S, Lesiak A, Cabaj J. Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase. SENSORS 2020; 20:s20164567. [PMID: 32823962 PMCID: PMC7472078 DOI: 10.3390/s20164567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022]
Abstract
Although neurotransmitters are present in human serum at the nM level, any dysfunction of the catecholamines concentration may lead to numerous serious health problems. Due to this fact, rapid and sensitive catecholamines detection is extremely important in modern medicine. However, there is no device that would measure the concentration of these compounds in body fluids. The main goal of the present study is to design a simple as possible, cost-effective new biosensor-based system for the detection of neurotransmitters, using nontoxic reagents. The miniature Au-E biosensor was designed and constructed through the immobilization of tyrosinase on an electroactive layer of cysteamine and carbon nanoparticles covering the gold electrode. This sensing arrangement utilized the catalytic oxidation of norepinephrine (NE) to NE quinone, measured with voltammetric techniques: cyclic voltammetry and differential pulse voltammetry. The prepared bio-system exhibited good parameters: a broad linear range (1–200 μM), limit of detection equal to 196 nM, limit of quantification equal to 312 nM, and high selectivity and sensitivity. It is noteworthy that described method was successfully applied for NE determination in real samples.
Collapse
Affiliation(s)
- Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
- Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
- Correspondence: ; Tel.: +48-71-320-4641
| |
Collapse
|
22
|
Zhang C, Du X. Electrochemical Sensors Based on Carbon Nanomaterial Used in Diagnosing Metabolic Disease. Front Chem 2020; 8:651. [PMID: 32850664 PMCID: PMC7432198 DOI: 10.3389/fchem.2020.00651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases have become common diseases with the improvement of living standards because of changed dietary habits and living habits, which seriously affect health. Currently, related biomarkers have been widely used as important indicators for clinical diagnosis, treatment, and prognosis of metabolic diseases. Among all detection methods for biomarkers of metabolic diseases, electrochemical sensor technology has the advantages of simplicity, real-time analysis, and low cost. Carbon nanomaterials were preeminent materials for fabricating electrochemical sensors in order to enhance the performance. In this paper, we summarize the research progress in the past 3 years of electrochemical sensors based on carbon nanomaterials in detecting markers of metabolic diseases, which include carbon nanotubes, graphene, carbon quantum dots, fullerene, and carbon nitride. Additionally, we discuss the future prospects for this field.
Collapse
Affiliation(s)
- Congcong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|