1
|
Marqués PS, Kammerer C. Aryl Sulfoxides: A Traceless Directing Group for Catalytic C-H Activation of Arenes. Chempluschem 2024; 89:e202300728. [PMID: 38529705 DOI: 10.1002/cplu.202300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The transition metal-catalyzed C-H activation of arenes directed by sulfoxides represents a compelling strategy in organic synthesis, owing to its exceptional regioselectivity and high efficiency. This innovative approach stands out for its traceless character, enabling the direct functionalization of arenes, before the easy removal or conversion of the key sulfinyl moiety. Beyond their utility as a directing group, sulfoxides have proved particularly valuable to mediate as chiral auxiliaries, presenting exciting prospects for the synthesis of stereo-enriched compounds upon C-H functionalization. The versatility demonstrated by the method paves the way to different structures with potential applications ranging from medicinal chemistry to organic electronics.
Collapse
Affiliation(s)
- Pablo Simón Marqués
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| |
Collapse
|
2
|
Hsu CC, Lee KM, Wu XW, Lin L, Yu WL, Liu CY. Hole-Transporting Materials based on Oligo(hetero)aryls with a Naphthodithiophene Core - Succinct Synthesis by Twofold Direct C-H Olefination. Chemistry 2024; 30:e202302552. [PMID: 37997029 DOI: 10.1002/chem.202302552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
This work demonstrated the first synthetic application of direct C-H olefinations in the step-saving preparation of various hole-transporting materials (HTM) for efficient perovskite solar cells (PSC). Cross-dehydrogenative couplings of naphthodithiophene (NDT) with vinyl arenes under palladium-catalysis facilely generated various new oligo(hetero)aryls with internal alkenes. Reaction conditions were optimized, which gave the product isolated yields of up to 71 % with high (E)-stereoselectivity. These readily accessible NDT core-based small molecules involving olefin as π-spacers displayed immediate power conversion efficiencies of up to 17.2 % without a device oxidation process that is required for the commercially available spiro-OMeTAD and most other existing HTMs while fabricated in corresponding PSC devices.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering/Department of Pediatrics, Chang Gung University/Chang Gung Memorial Hospital Guishan District, Taoyuan City, 333, Taiwan
- College of Environment and Resources, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| | - Xiao-Wei Wu
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| | - Li Lin
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| | - Wei-Lun Yu
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| | - Ching-Yuan Liu
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| |
Collapse
|
3
|
Farshadfar K, Tizhoush SK, Ariafard A. Role of Brønsted Acids in Promoting Pd(OAc)2-Catalyzed Chlorination of Phenol Carbamates Using N-Chlorosuccinimide. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
| | - Samaneh K. Tizhoush
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
| | - Alireza Ariafard
- School of Natural Sciences─Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| |
Collapse
|
4
|
Shi Y, Bai W, Mu W, Li J, Yu J, Lian B. Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Hirashita T, Watanabe H, Harada Y, Kurabayashi H, Yukinobu, Yamashita, Oizumi S, Araki S. Palladium‐Catalyzed Selective
o
‐Bromination of Mesoionic 1,3‐Diphenyltetrazolium‐5‐olate: Switching the Directing Group from Nitrogen to Oxygen. ChemistrySelect 2021. [DOI: 10.1002/slct.202103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tsunehisa Hirashita
- Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 Japan
| | - Harue Watanabe
- Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 Japan
| | - Yuki Harada
- Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 Japan
| | - Hideaki Kurabayashi
- Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 Japan
| | - Yukinobu
- Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 Japan
| | - Yamashita
- Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 Japan
| | - Shiyogo Oizumi
- Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 Japan
| | - Shuki Araki
- Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 Japan
| |
Collapse
|
6
|
La M, Liu D, Chen X, Zhang FL, Zhou Y. Monodentate Transient Directing Group-Assisted Palladium-Catalyzed Direct ortho-C-H Iodination of Benzaldehydes for Total Synthesis of Hernandial. Org Lett 2021; 23:9184-9188. [PMID: 34787425 DOI: 10.1021/acs.orglett.1c03491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first palladium-catalyzed direct o-C-H iodination of benzaldehydes was successfully developed with the assistance of commercially available 2,5-bis(trifluoromethyl)aniline as the optimal monodentate transient directing group (MonoTDG). Moderate to excellent yields and good selectivity were achieved for a broad substrate scope under mild conditions. More importantly, the synthetic application was demonstrated by a concise two-step total synthesis of the natural product hernandial, which was accomplished by merging this new MonoTDG-assisted C-H iodination and subsequent copper-catalyzed cross-coupling.
Collapse
Affiliation(s)
- Ming La
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,Chemistry and Environment Engineering College, Pingdingshan University, Pingdingshan 475000, People's Republic of China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Dandan Liu
- Chemistry and Environment Engineering College, Pingdingshan University, Pingdingshan 475000, People's Republic of China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Xuerong Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, People's Republic of China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
7
|
Amri N, Wirth T. Flow Electrosynthesis of Sulfoxides, Sulfones, and Sulfoximines without Supporting Electrolytes. J Org Chem 2021; 86:15961-15972. [PMID: 34164983 DOI: 10.1021/acs.joc.1c00860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient electrochemical flow process for the selective oxidation of sulfides to sulfoxides and sulfones and of sulfoxides to N-cyanosulfoximines has been developed. In total, 69 examples of sulfoxides, sulfones, and N-cyanosulfoximines have been synthesized in good to excellent yields and with high current efficiencies. The synthesis was assisted and facilitated through a supporting electrolyte-free, fully automated electrochemical protocol that highlights the advantages of flow electrolysis.
Collapse
Affiliation(s)
- Nasser Amri
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
8
|
Banga S, Kaur R, Babu SA. Construction of Racemic and Enantiopure Biaryl Unnatural Amino Acid Derivatives via Pd(II)‐Catalyzed Arylation of Unactivated Csp
3
−H Bonds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shefali Banga
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Ramandeep Kaur
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
9
|
Liu CY, Lin PH, Lee KM. Development of Step-Saving Alternative Synthetic Pathways for Functional π-Conjugated Materials. CHEM REC 2021; 21:3498-3508. [PMID: 33955155 DOI: 10.1002/tcr.202100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Synthetic organic chemists endeavor to develop new reaction conditions, improve product yields, and enhance atom economy (synthetic methodologies), whereas the material scientists strive to create novel functional molecules/structures, increase device stabilities, and promote power conversion efficiencies via device engineering (organic optoelectronics). However, these two prominent research fields seem to have no intersections. Since joining national central university in 2012, our research philosophy aims to narrow, or rather to bridge the gap between synthetic methodologies and π-functional organic materials. In contrast to using multistep synthetic approaches based on Suzuki- or Stille coupling reactions, this personal account describes various step-saving and viable synthesis-shortcuts developed by our group, to access thiophene-based small molecules for optoelectronic applications. We expect these succinct and user-friendly alternative pathways designed by synthetic chemists would help material scientists to reach their target molecules in a more step-economical manner.
Collapse
Affiliation(s)
- Ching-Yuan Liu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan (R.O.C
| | - Po-Han Lin
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan (R.O.C
| | - Kun-Mu Lee
- Department of Chemical & Materials Engineering, Chang Gung University/Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan (R.O.C
| |
Collapse
|
10
|
Lu X, Wan B. Palladium‐Catalyzed C−H Functionalization of Diaryl 1,3,5‐Triazines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaodong Lu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Boshun Wan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 China
| |
Collapse
|