1
|
Chen X, Liu J, Zhang Y, Gao X, Su D. Site-Specific Cascade-Activatable Fluorogenic Nanomicelles Enable Precision and Accuracy Imaging of Pulmonary Metastatic Tumor. JACS AU 2024; 4:2606-2616. [PMID: 39055141 PMCID: PMC11267558 DOI: 10.1021/jacsau.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The precise localization of metastatic tumors with subtle growth is crucial for timely intervention and improvement of tumor prognosis but remains a paramount challenging. To date, site-specific activation of fluorogenic probes for single-stimulus-based diagnosis typically targets an occult molecular event in a complex biosystem with limited specificity. Herein, we propose a highly specific site-specific cascade-activated strategy to enhance detection accuracy, aiming to achieve the accurate detection of breast cancer (BC) lung metastasis in a cascade manner. Specifically, cascade-activatable NIR fluorogenic nanomicelles HPNs were constructed using ultra-pH-sensitive (UPS) block copolymers as carriers and nitroreductase (NTR)-activated fluorogenic reporters. HPNs exhibit programmable cascade response characteristics by first instantaneous dissociating under in situ tumor acidity, facilitating deep tumor penetration followed by selective fluorescence activation through NTR-mediated enzymatic reaction resulting in high fluorescence ON/OFF contrast. Notably, this unique feature of HPNs enables high-precision diagnosis of orthotopic BC as well as its lung metastases with a remarkable signal-to-background ratio (SBR). This proposed site-specific cascade activation strategy will offer opportunities for a specific diagnosis with high signal fidelity of various insidious metastatic lesions in situ across different diseases.
Collapse
Affiliation(s)
- Xueqian Chen
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jiatian Liu
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yong Zhang
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xueyun Gao
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Dongdong Su
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
2
|
Martin A, Rivera-Fuentes P. Fluorogenic polymethine dyes by intramolecular cyclization. Curr Opin Chem Biol 2024; 80:102444. [PMID: 38520774 DOI: 10.1016/j.cbpa.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Fluorescence imaging plays a pivotal role in the study of biological processes, and cell-permeable fluorogenic dyes are crucial to visualize intracellular structures with high specificity. Polymethine dyes are vitally important fluorophores in single-molecule localization microscopy and in vivo imaging, but their use in live cells has been limited by high background fluorescence and low membrane permeability. In this review, we summarize recent advances in the development of fluorogenic polymethine dyes via intramolecular cyclization. Finally, we offer an outlook on the prospects of fluorogenic polymethine dyes for bioimaging.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland; École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Wang Y, Zhang Y, Li M, Gao X, Su D. An Efficient Strategy for Constructing Fluorescent Nanoprobes for Prolonged and Accurate Tumor Imaging. Anal Chem 2024; 96:2481-2490. [PMID: 38293931 DOI: 10.1021/acs.analchem.3c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activatable near-infrared (NIR) fluorescent probes possess advantages of high selectivity, sensitivity, and deep imaging depth, holding great potential in the early diagnosis and prognosis assessment of tumors. However, small-molecule fluorescent probes are largely limited due to the rapid diffusion and metabolic clearance of activated fluorophores in vivo. Herein, we propose an efficient and reproducible novel strategy to construct activatable fluorescent nanoprobes through bioorthogonal reactions and the strong gold-sulfur (Au-S) interactions to achieve an enhanced permeability and retention (EPR) effect, thereby achieving prolonged and high-contrast tumor imaging in vivo. To demonstrate the merits of this strategy, we prepared an activatable nanoprobe, hCy-ALP@AuNP, for imaging alkaline phosphatase (ALP) activity in vivo, whose nanoscale properties facilitate accumulation and long-term retention in tumor lesions. Tumor-overexpressed ALP significantly increased the fluorescence signal of hCy-ALP@AuNP in the NIR region. More importantly, compared with the small-molecule probe hCy-ALP-N3, the nanoprobe hCy-ALP@AuNP significantly improved the distribution and retention time in the tumor, thus improving the imaging window and accuracy. Therefore, this nanoprobe platform has great potential in the efficient construction of biomarker-responsive fluorescent nanoprobes to realize precise tumor diagnosis in vivo.
Collapse
Affiliation(s)
- Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Mingrui Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
4
|
Chan KH, Wang Y, Zheng BX, Long W, Feng X, Wong WL. RNA-Selective Small-Molecule Ligands: Recent Advances in Live-Cell Imaging and Drug Discovery. ChemMedChem 2023; 18:e202300271. [PMID: 37649155 DOI: 10.1002/cmdc.202300271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
RNA structures, including those formed from coding and noncoding RNAs, alternative to protein-based drug targets, could be a promising target of small molecules for drug discovery against various human diseases, particularly in anticancer, antibacterial and antivirus development. The normal cellular activity of cells is critically dependent on the function of various RNA molecules generated from DNA transcription. Moreover, many studies support that mRNA-targeting small molecules may regulate the synthesis of disease-related proteins via the non-covalent mRNA-ligand interactions that do not involve gene modification. RNA-ligand interaction is thus an attractive approach to address the challenge of "undruggable" proteins in drug discovery because the intracellular activity of these proteins is hard to be suppressed with small molecule ligands. We selectively surveyed a specific area of RNA structure-selective small molecule ligands in fluorescence live cell imaging and drug discovery because the area was currently underexplored. This state-of-the-art review thus mainly focuses on the research published within the past three years and aims to provide the most recent information on this research area; hopefully, it could be complementary to the previously reported reviews and give new insights into the future development on RNA-specific small molecule ligands for live cell imaging and drug discovery.
Collapse
Affiliation(s)
- Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Yakun Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Xinxin Feng
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
5
|
Ding C, Ren T. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Liu B, Yin H, Li Y, Mao G, Yang S, Zhang K. Recent Advances in Small Molecular Fluorescence Probes for Fatty Liver Diseases. CHEMOSENSORS 2023; 11:241. [DOI: 10.3390/chemosensors11040241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Fatty liver diseases are a spectrum of liver disorders consisting of the benign fatty liver, which could eventually lead to cirrhosis or even hepatocellular cancer (HCC) without timely treatment. Therefore, early diagnosis is crucial for fatty liver diseases. Liver biopsy is regarded as the gold standard in the diagnosis of fatty liver diseases. However, it is not recommended for routine use due to its invasiveness and complicated operation. Thus, it is urgent to diagnose fatty liver diseases with non-invasive and precise methods. In this regard, fluorescence imaging technology has attracted intensive attention and become a robust non-invasive method for fatty liver visualization, and a series of fluorescent probes are being intensively designed to track the biomarkers in fatty liver. In this brief review, the small molecular fluorescent probes employed in fatty liver are summarized, mainly focusing on the last four years. Moreover, current opportunities and challenges in the development of fluorescent probes for fatty liver will be highlighted.
Collapse
Affiliation(s)
- Bo Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Honghui Yin
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yaxiong Li
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Zhang Y, Li W, Chen X, Xiong S, Bian Y, Yuan L, Gao X, Su D. Liver-Targeted Near-Infrared Fluorescence/Photoacoustic Dual-Modal Probe for Real-Time Imaging of In Situ Hepatic Inflammation. Anal Chem 2023; 95:2579-2587. [PMID: 36642958 DOI: 10.1021/acs.analchem.2c05476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Early diagnosis of hepatic inflammation is the key to timely treatment and avoid the worsening of liver inflammation. Near-infrared fluorescence (NIRF) probes have high sensitivity but low spatial resolution in lesion imaging, while photoacoustic (PA) imaging has good spatial location information. Therefore, the development of a NIRF/PA dual-modal probe integrated with high sensitivity and spatial location feedback can achieve an accurate early diagnosis of hepatic inflammation. Here, we report an activatable NIRF/PA dual-modal probe (hCy-Tf-CA) for the detection of the superoxide anion (O2·-) in early hepatic inflammation. hCy-Tf-CA showed high selectivity and sensitivity for detecting O2·- fluctuation in vitro. More importantly, by introducing hepatocyte-targeting cholic acid (CA), the probe successfully achieved accurate in situ imaging of acute inflammatory liver injury (AILI) and autoimmune hepatitis (AIH) in vivo. The introduced CA not only promotes the hepatic targeting accumulation of probes but also improves the performance of low background dual-modal imaging in vivo. Therefore, hCy-Tf-CA provides an effective strategy for significantly improving in situ imaging performance and holds great potential for early, sensitive, and accurate diagnosis of hepatic inflammation.
Collapse
Affiliation(s)
- Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
8
|
Liu Q, Huang J, He L, Yang X, Yuan L, Cheng D. Molecular fluorescent probes for liver tumor imaging. Chem Asian J 2022; 17:e202200091. [PMID: 35234359 DOI: 10.1002/asia.202200091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Indexed: 11/10/2022]
Abstract
Liver cancer is a malignant tumor with both high morbidity and mortality. Traditional treatment method is mainly based on hepatectomy for liver tumor. However, it is difficult to accurately distinguish the tumor tissue and its boundary with the naked eye and palpation, leading to an ambiguous resection result, finally causes high recurrence of liver cancer. Molecular fluorescent probes possess lots of advantages, such as non-invasive, high sensitivity, and real-time imaging have been extensively studied in liver cancer imaging and therapy. In this minireview, we briefly introduce the recent developments of always on and activatable fluorescent probes in the liver cancer image and therapy. Future potential challenges of the fluorescent probes for liver tumor are also discussed. We expect that this minireview would improve the fluorescent probes development for real clinical application of liver cancer disease.
Collapse
Affiliation(s)
- Qian Liu
- University of South China, Hengyang Medical School, CHINA
| | - Jia Huang
- University of South China, Hengyang Medical School, CHINA
| | - Longwei He
- University of South China, Department of Pharmacy and Pharmacology, CHINA
| | - Xuefeng Yang
- University of South China Affiliated Nanhua Hospital, Hengyang Medical School, CHINA
| | - Lin Yuan
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Dan Cheng
- University of South China Affiliated Nanhua Hospital, Hengyang Medical School, Hengyang 421002, Hunan, China, 421002, Hengyang, CHINA
| |
Collapse
|
9
|
Zhang Y, Chen X, Yuan Q, Bian Y, Li M, Wang Y, Gao X, Su D. Enzyme-activated near-infrared fluorogenic probe with high-efficiency intrahepatic targeting ability for visualization of drug-induced liver injury. Chem Sci 2021; 12:14855-14862. [PMID: 34820101 PMCID: PMC8597858 DOI: 10.1039/d1sc04825b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatotoxicity is a serious problem faced by thousands of clinical drugs, and drug-induced liver injury (DILI) caused by chronic administration or overdose has become a major biosafety issue. However, the near-infrared (NIR) fluorescent probes currently used for liver injury detection still suffer from poor liver targeting ability and low sensitivity. Enzyme-activated fluorogenic probes with powerful in situ targeting ability are the key to improving the imaging effect of liver injury. Herein, we rationally designed a leucine aminopeptidase (LAP) activated fluorogenic probe hCy-CA-LAP, which greatly improved the hepatocyte-targeting capability by introducing a cholic acid group. The probe hCy-CA-LAP is converted into a high-emission hCy-CA fluorophore in the presence of LAP, showing high selectivity, high sensitivity and low detection limit (0.0067 U mL-1) for LAP, and successfully realizes the sensitive detection of small fluctuations of LAP in living cells. Moreover, the probe can achieve effective in situ accumulation in the liver, thereby achieving precise imaging and evaluation of two different types of drug-induced hepatotoxicity in vivo. Therefore, the probe hCy-CA-LAP may be a potential tool for exploring the roles of LAP and evaluating the degree of DILI.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Xueqian Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Yongning Bian
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Mingrui Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Yaling Wang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Dongdong Su
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| |
Collapse
|