1
|
Marae IS, Tan J, Yoshioka R, Ziadi Z, Khaskin E, Vasylevskyi S, Kabe R, Xu X, Narita A. Synthesis and characterizations of highly luminescent 5-isopropoxybenzo[ rst]pentaphene. Beilstein J Org Chem 2025; 21:270-276. [PMID: 39931682 PMCID: PMC11809583 DOI: 10.3762/bjoc.21.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
A benzo[rst]pentaphene (BPP) substituted by an isopropoxy group (BPP-OiPr) was synthesized in a facile manner. Its photophysical properties were investigated by UV-vis absorption and fluorescence spectroscopy in compassion to pristine BPP and its oxidation product, benzo[rst]pentaphene-5,8-dione (BPP-dione). BPP-OiPr exhibited a significantly enhanced photoluminescence quantum yield (PLQY), reaching 73% in comparison to pristine BPP (13%). BPP-dione, when compared to the parent BPP, also displayed improved absorption and emission from the first excited singlet (S1) state with a PLQY of 62% and an intramolecular charge-transfer character. The rod-like nano- to microcrystals as well as longer wires of these BPPs were also revealed by scanning electron microscopy. The intriguing optical properties of BPP and its derivatives may lead to their application as fluorophores.
Collapse
Affiliation(s)
- Islam S Marae
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Jingyun Tan
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Rengo Yoshioka
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Zakaria Ziadi
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Eugene Khaskin
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Serhii Vasylevskyi
- X-ray diffraction facility, Department of Chemistry, 100 E. 24th Street, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ryota Kabe
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
2
|
Li R, Lin X, Ding C, Xu B, Tan Q. Heterocoronenes Containing Pyridine and 1,2-Azaborine Units. Org Lett 2024; 26:11028-11033. [PMID: 39652784 DOI: 10.1021/acs.orglett.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Several coronenes containing pyridine and azaborine units have been readily prepared and structurally confirmed by X-ray crystallographic analysis. The codoping results in interesting findings and properties such as the first observation of BN-H---NPy hydrogen bonds in crystals of BN-PAHs, short π-π stacking distances, lowered HOMO-LUMO levels, narrow band gap, and unique dual response to fluoride ion and proton in solution.
Collapse
Affiliation(s)
- Ruili Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohong Lin
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Changhua Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Reinhard D, Schuldt MP, Elbert SM, Ueberricke L, Hengefeld K, Rominger F, Mastalerz M. Substituent Effects in Scholl-Type Reactions of 1,2-Terphenyls to Triphenylenes. Chemistry 2024; 30:e202402821. [PMID: 39253989 DOI: 10.1002/chem.202402821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
A series of 3,3''- and 4,4''-dimethoxy terphenyls with different second substituents on their ortho-positions have been synthesized and investigated upon the possibility to be oxidatively cyclodehydrogenated to the corresponding triphenylenes under Scholl-type conditions. The experimentally obtained selectivities were supported and explained by quantum chemical calculations and conclusions on the involved mechanisms (acid catalyzed arenium-ion mechanism (AIM) vs radical cation mechanism) were drawn.
Collapse
Affiliation(s)
- Dennis Reinhard
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Karsten Hengefeld
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Seino K, Okano T, Oya K, Katagiri H, Murase T. Helix-to-Disc Conversion of Thia[6]helicenes into Coronenes Facilitated by Sulfur Oxidation and Fluorination. Chemistry 2024; 30:e202402445. [PMID: 39051923 DOI: 10.1002/chem.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Helicenes, with their unique helical structures, have long captured the interest of synthetic chemists, not only as end products, but also as versatile platforms for further chemical transformations. However, transforming [6]helicene into planar coronene typically requires harsh conditions and poses significant challenges. Herein, we demonstrate that replacing the terminal benzene ring of [6]helicene with a thiophene ring enables its photochemical transformation into coronene. Sulfur oxidation of the thiophene ring enables the corresponding thermal transformation, and the terminal tetrafluorination of the opposite benzene ring further accelerates this process, yielding 1,2-difluorocoronene, as confirmed by X-ray crystallography. The transformation begins with an intramolecular Diels-Alder reaction, whose activation energy is significantly lowered by these structural changes. Our findings underscore the utility of strategic modifications such as sulfur oxidation and fluorination in promoting this "helix-to-disc" conversion and opening new avenues for synthesizing functional polycyclic aromatics.
Collapse
Affiliation(s)
- Kaito Seino
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Tsubasa Okano
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Koki Oya
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Hiroshi Katagiri
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Takashi Murase
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| |
Collapse
|
5
|
Weber I, Lee YP. Fluorescence Excitation and Dispersed Fluorescence Spectra of the First Electronic Excited (S 1) State of peri-Hexabenzocoronene (C 42H 18) Isolated in Solid para-Hydrogen. J Phys Chem A 2024; 128:4984-4991. [PMID: 38864511 PMCID: PMC11215764 DOI: 10.1021/acs.jpca.4c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Large polycyclic aromatic hydrocarbons (PAH) and their cationic, hydrogenated, and protonated derivatives have long been considered as promising candidates for the carriers of the diffuse interstellar bands. peri-Hexabenzocoronene (peri-HBC, C42H18) is a large, compact PAH, and, to the best of our knowledge, the largest centrosymmetric all-benzenoid PAH for which electronic spectroscopy data has been published. In this work, we present the dispersed fluorescence and fluorescence excitation spectra of the first electronic excited (S1) state of peri-HBC isolated in solid para-H2 and provide the first detailed vibronic analysis of observed features. The observed spectra agree with the emission and absorption spectra simulated according to optimized geometries and scaled harmonic vibrational frequencies calculated at the density functional theory (DFT) level using a Franck-Condon Herzberg-Teller approach; the spectral bands are associated solely with vibrational normal modes of approximate e2g symmetry and their combinations with vibrational modes of approximately a1g symmetry. We clearly observed the position of the S1-S0 electronic transition origin of peri-HBC at 22,088 cm-1 (452.7 nm), which was unreported previously. The matrix shift of ∼110 cm-1 to the red relative to the gas-phase value was estimated by comparison of two reported gas-phase bands with our work. Because of the significant deviation from the reported wavelengths of DIB, the weakness of the S1-S0 electronic transitions, and the lack of reported DIB at <400 nm where the intense S4 ← S0 band of peri-HBC is located, peri-HBC is unlikely to contribute to DIB.
Collapse
Affiliation(s)
- Isabelle Weber
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
6
|
Xu F, Su H, van der Tol JJB, Jansen SAH, Fu Y, Lavarda G, Vantomme G, Meskers S, Meijer EW. Supramolecular Polymerization as a Tool to Reveal the Magnetic Transition Dipole Moment of Heptazines. J Am Chem Soc 2024; 146:15843-15849. [PMID: 38815616 PMCID: PMC11177250 DOI: 10.1021/jacs.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Heptazine derivatives have attracted significant interest due to their small S1-T1 gap, which contributes to their unique electronic and optical properties. However, the nature of the lowest excited state remains ambiguous. In the present study, we characterize the lowest optical transition of heptazine by its magnetic transition dipole moment. To measure the magnetic transition dipole moment, the flat heptazine must be chiroptically active, which is difficult to achieve for single heptazine molecules. Therefore, we used supramolecular polymerization as an approach to make homochiral stacks of heptazine derivatives. Upon formation of the supramolecular polymers, the preferred helical stacking of heptazine introduces circular polarization of absorption and fluorescence. The magnetic transition dipole moments for the S1 ← S0 and S1 → S0 are determined to be 0.35 and 0.36 Bohr magneton, respectively. These high values of magnetic transition dipole moments support the intramolecular charge transfer nature of the lowest excited state from nitrogen to carbon in heptazine and further confirm the degeneracy of S1 and T1.
Collapse
Affiliation(s)
- Fan Xu
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Hao Su
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Joost J. B. van der Tol
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Stef A. H. Jansen
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Youxin Fu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh4, Groningen 9747AG, Netherlands
| | - Giulia Lavarda
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Ghislaine Vantomme
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Stefan Meskers
- Institute
for Complex Molecular Systems and Molecular Materials and Nanosystems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
- School
of Chemistry and RNA Institute, UNSW, Sydney NSW 2052, Australia
| |
Collapse
|
7
|
Soliman L, Ramassamy E, Dujarric K, Naulet G, Dechambenoit P, Bock H, Durola F. Coronenes with push-pull geometries from macrocycle-forming Perkin condensations. Chem Commun (Camb) 2024; 60:4439-4442. [PMID: 38563426 DOI: 10.1039/d4cc00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Although the Perkin reaction has been successful in producing ester-substituted conjugated macrocycles with four or six building blocks, macrocycles composed of only two elements remained elusive until now. Through the development of a building block derived from phenanthrene with two glyoxylic acid substituents in a pincer-like arrangement, formation of a two-block macrocycle was induced when paired with a complementary phenylenediacetic acid unit. The addition of ether functions to the phenanthrene building block not only improved the yields, but led to macrocycles with push-pull geometries. Photocyclisation of the resulting cyclophanes efficiently yield tetra- and hexasubstituted coronenes.
Collapse
Affiliation(s)
- Luc Soliman
- CNRS & Univ. Bordeaux, Centre de Recherche Paul Pascal, 115 avenue Schweitzer, 33600 Pessac, France.
| | - Elsa Ramassamy
- CNRS & Univ. Bordeaux, Centre de Recherche Paul Pascal, 115 avenue Schweitzer, 33600 Pessac, France.
| | - Katia Dujarric
- CNRS & Univ. Bordeaux, Centre de Recherche Paul Pascal, 115 avenue Schweitzer, 33600 Pessac, France.
| | - Guillaume Naulet
- CNRS & Univ. Bordeaux, Centre de Recherche Paul Pascal, 115 avenue Schweitzer, 33600 Pessac, France.
| | - Pierre Dechambenoit
- CNRS & Univ. Bordeaux, Centre de Recherche Paul Pascal, 115 avenue Schweitzer, 33600 Pessac, France.
| | - Harald Bock
- CNRS & Univ. Bordeaux, Centre de Recherche Paul Pascal, 115 avenue Schweitzer, 33600 Pessac, France.
| | - Fabien Durola
- CNRS & Univ. Bordeaux, Centre de Recherche Paul Pascal, 115 avenue Schweitzer, 33600 Pessac, France.
| |
Collapse
|
8
|
Xie Z, Liu W, Liu Y, Song X, Zheng H, Su X, Redshaw C, Feng X. Influence of Steric Effects on the Emission Behavior of Pyrene-Based Blue Luminogens. J Org Chem 2024; 89:1681-1691. [PMID: 38207100 DOI: 10.1021/acs.joc.3c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Pyrene-based derivatives have been widely deployed in organic luminescent materials because of their bright fluorescence, high charge carrier mobility, and facile modification. Nevertheless, the fluorescence output of conventional pyrenes is prone to quenching upon aggregation due to extensive intermolecular π-π stacking interactions. To address this issue, a set of new Y-shaped pyrene-containing luminogens are synthesized from a new bromopyrene chemical precursor, 2-hydroxyl-7-tert-butyl-1,3-bromopyrene, where the bromo and hydroxyl groups at the pyrene core can be readily modified to obtain the target products and provide great flexibility in tuning the photophysical performances. When the hydroxy group at the 2-position of pyrene was replaced by a benzyl group, the steric hindrance of the benzyl group not only efficiently inhibits the detrimental intermolecular π-π stacking interactions but also rigidifies the molecular conformation, resulting in a narrow-band blue emission. Moreover, the TPE-containing compounds 2c and 3c possessed characteristic aggregation-induced emission (AIE) properties with fluorescence quantum yields of up to 66% and 38% in the solid state, respectively. Thus, this article has methodically investigated the factors influencing the optical behavior, such as intermolecular interactions, and the steric effects of the substituent group, thereby opening up the potential to develop narrow-band pyrene-based blue emitters for OLED device applications.
Collapse
Affiliation(s)
- Zhixin Xie
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wei Liu
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yiwei Liu
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xinyi Song
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Heng Zheng
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiang Su
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, Yorkshire, U.K
| | - Xing Feng
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
E V, Ghadei SK, Ruidas S, Bhakta V, Sakthivel R, Sankaran KJ, Bhaumik A, Dalapati S. A Metal-Free Triazacoronene-Based Bimodal VOC Sensor. ACS Sens 2024; 9:251-261. [PMID: 38207113 DOI: 10.1021/acssensors.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Developing suitable sensors for selective and sensitive detection of volatile organic compounds (VOCs) is crucial for monitoring indoor and outdoor air quality. VOCs are very harmful to our health upon inhalation or contact. Bimodal sensor materials with more than one transduction capability (optical and electrical) offer the ability to extract complementary information from the individual analyte, thus improving detection accuracy and performance. The privilege of manipulating the optoelectronic properties of the polycyclic aromatic hydrocarbon-based semiconducting materials offers rapid signal transduction in multimodal sensing applications. A thiophene-functionalized triazacoronene (TTAC) donor-acceptor-donor (D-A-D) type sensor is reported here for VOC sensing. The single-crystal X-ray structure analysis of the TTAC revealed that a distinctive supramolecular polymer architecture was formed because of cooperative π-π and intermolecular D-A interactions and exhibited rapid signal transduction upon exposure to specific VOCs. The TTAC-embedded green luminescent paper-based test strip exhibited an on-off fluorescence response upon nitrobenzene vapor exposure for 120 s. The selective and rapid response is due to the fast photoinduced electron transfer, as is evident from the time-resolved excited-state dynamics and density functional theory studies. The thick-film-based prototype chemiresistive sensor detects harmful VOCs in a custom-made gas sensing system including benzene, toluene, and nitrobenzene. The TTAC sensor rapidly responds (200 s) at relatively low temperatures (180 οC) compared to other reported metal-oxide-based sensors.
Collapse
Affiliation(s)
- Varadharajan E
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Surya Kanta Ghadei
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Viki Bhakta
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Ramasamy Sakthivel
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | | | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sasanka Dalapati
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| |
Collapse
|
10
|
Zhang KL, Yu WH, Zhao KQ, Hu P, Wang BQ, Donnio B. Mesomorphism Modulation of Perfluorinated Janus Triphenylenes by Inhomogeneous Chain Substitution Patterns. Chem Asian J 2024:e202301080. [PMID: 38214422 DOI: 10.1002/asia.202301080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Two isomeric series of compounds with "inverted" chains' substitution patterns, 7,10-dialkoxy-1,2,3,4-tetrafluoro-6,11-dimethoxytriphenylene and 6,11-dialkoxy-1,2,3,4-tetrafluoro-7,10-dimethoxytriphenylene, labelled respectively p-TPFn and m-TPFn, and two non-fluorinated homologous isomers, 3,6-dibutoxy-2,7-dimethoxytriphenylene and 2,7-dibutoxy-3,6-dimethoxytriphenylene, p-TP4 and m-TP4, respectively, were synthesized in three steps and obtained in good yields by the efficient transition-metal-free, fluoroarene nucleophilic substitution via the reaction of appropriate 2,2'-dilithium biphenylenes with either perfluorobenzene, C6 F6 , to yield p-TPFn and m-TPFn, or o-difluorobenzene, C6 H4 F2 , for p-TP4 and m-TP4, respectively. The single-crystal structures of p-TPF4, m-TPF4 and p-TP4, unequivocally confirmed that the cyclization reactions occurred at the expected positions, and that the fluorinated molecules stack up into columns with short separation, a propitious situation for the emergence of columnar mesophases. The mesomorphous properties were found to be greatly affected by both chains' length and positional isomerism: a Colhex phase is found for p-TPF4 and m-TPF4, but mesomorphism vanishes in p-TPF6, and changes for the isomeric homologs m-TPFn, with the induction for n≥6 of a lamello-columnar phase, LamColrec . As expected, both non-fluorinated compounds are deprived of mesomorphism. These compounds emit blue-violet colour in solution, independently of the chains' substitution pattern, and the absolute fluorescence quantum yields can reach up to 46 %. In thin films, fluorescence is slightly redshifted.
Collapse
Affiliation(s)
- Kai-Li Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034, cedex 2 Strasbourg, France
| |
Collapse
|
11
|
Eichelmann R, Ballmann J, Gade LH. Tetraazacoronenes and Their Dimers, Trimers and Tetramers. Angew Chem Int Ed Engl 2023; 62:e202309198. [PMID: 37409960 DOI: 10.1002/anie.202309198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
Tetraazacoronenes were synthesized from bay-functionalized tetraazaperylenes by Zr-mediated cyclization and four-fold Suzuki-Miyaura cross coupling. In the Zr-mediated approach, an η4 -cyclobutadiene-zirconium(IV) complex was isolated as an intermediate to cyclobutene-annulated derivatives. Using bis(pinacolatoboryl)vinyltrimethylsilane as a C2 building block gave the tetraazacoronene target compound along with the condensed azacoronene dimer as well as higher oligomers. The series of extended azacoronenes show highly resolved UV/Vis absorption bands with increased extinction coefficients for the extended aromatic cores and fluorescence quantum yields of up to 80 % at 659 nm.
Collapse
Affiliation(s)
- Robert Eichelmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Krupka O, Hudhomme P. Recent Advances in Applications of Fluorescent Perylenediimide and Perylenemonoimide Dyes in Bioimaging, Photothermal and Photodynamic Therapy. Int J Mol Sci 2023; 24:ijms24076308. [PMID: 37047280 PMCID: PMC10094654 DOI: 10.3390/ijms24076308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The emblematic perylenediimide (PDI) motif which was initially used as a simple dye has undergone incredible development in recent decades. The increasing power of synthetic organic chemistry has allowed it to decorate PDIs to achieve highly functional dyes. As these PDI derivatives combine thermal, chemical and photostability, with an additional high absorption coefficient and near-unity fluorescence quantum yield, they have been widely studied for applications in materials science, particularly in photovoltaics. Although PDIs have always been in the spotlight, their asymmetric counterparts, perylenemonoimide (PMI) analogues, are now experiencing a resurgence of interest with new efforts to create architectures with equally exciting properties. Namely, their exceptional fluorescence properties have recently been used to develop novel systems for applications in bioimaging, biosensing and photodynamic therapy. This review covers the state of the art in the synthesis, photophysical characterizations and recently reported applications demonstrating the versatility of these two sister PDI and PMI compounds. The objective is to show that after well-known applications in materials science, the emerging trends in the use of PDI- and PMI-based derivatives concern very specific biomedicinal applications including drug delivery, diagnostics and theranostics.
Collapse
Affiliation(s)
- Oksana Krupka
- Univ. Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| | - Piétrick Hudhomme
- Univ. Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| |
Collapse
|
13
|
Gilmartin P, Vu C, Rotella M, Kaur J, Kozlowski M. Edge-Decorated Polycyclic Aromatic Hydrocarbons by an Oxidative Coupling Approach. Chemistry 2023; 29:e202203405. [PMID: 36332182 PMCID: PMC9957926 DOI: 10.1002/chem.202203405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Oxidative phenol coupling reduces reliance on halo/metalated substrates used in conventional redox neutral couplings. A new strategy for constructing polycyclic aromatic hydrocarbons (PAHs) that incorporates oxidative phenol coupling is outlined in a three-stage approach: oxidative fragment coupling, linking of the two resultant units, and oxidative cyclization. The protocol allows rapid assembly of both planar and helical systems with a high degree of edge functionalization. The incorporation of 12 alkoxy groups on systems with 12 rings gave rise to lower optical gaps compared to systems with a lesser degree of edge functionalization.
Collapse
Affiliation(s)
- Philip Gilmartin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cassandra Vu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Madeline Rotella
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jasjit Kaur
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marisa Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Kappe M, Calvo F, Schöntag J, Bettinger HF, Krasnokutski S, Kuhn M, Gruber E, Zappa F, Scheier P, Echt O. Solvation of Large Polycyclic Aromatic Hydrocarbons in Helium: Cationic and Anionic Hexabenzocoronene. Molecules 2022; 27:6764. [PMID: 36235296 PMCID: PMC9573446 DOI: 10.3390/molecules27196764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
The adsorption of helium on charged hexabenzocoronene (Hbc, C42H18), a planar polycyclic aromatic hydrocarbon (PAH) molecule of D6h symmetry, was investigated by a combination of high-resolution mass spectrometry and classical and quantum computational methods. The ion abundance of HenHbc+ complexes versus size n features prominent local anomalies at n = 14, 38, 68, 82, and a weak one at 26, indicating that for these "magic" sizes, the helium evaporation energies are relatively large. Surprisingly, the mass spectra of anionic HenHbc- complexes feature a different set of anomalies, namely at n = 14, 26, 60, and 62, suggesting that the preferred arrangement of the adsorbate atoms depends on the charge of the substrate. The results of our quantum calculations show that the adsorbate layer grows by successive filling of concentric rings that surround the central benzene ring, which is occupied by one helium atom each on either side of the substrate. The helium atoms are fairly localized in filled rings and they approximately preserve the D6h symmetry of the substrate, but helium atoms in partially filled rings are rather delocalized. The first three rings contain six atoms each; they account for magic numbers at n = 14, 26, and 38. The size of the first ring shrinks as atoms are filled into the second ring, and the position of atoms in the second ring changes from hollow sites to bridge sites as atoms are filled into the third ring. Beyond n = 38, however, the arrangement of helium atoms in the first three rings remains essentially frozen. Presumably, another ring is filled at n = 68 for cations and n = 62 for anions. The calculated structures and energies do not account for the difference between charge states, although they agree with the measurements for the cations and show that the first solvation shell of Hbc± is complete at n = 68. Beyond that size, the adsorbate layer becomes three-dimensional, and the circular arrangement of helium changes to hexagonal.
Collapse
Affiliation(s)
- Miriam Kappe
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Florent Calvo
- Laboratoire Interdisciplinaire de Physique, CNRS, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Johannes Schöntag
- Institut für Organische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Holger F. Bettinger
- Institut für Organische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Serge Krasnokutski
- Laboratory Astrophysics and Cluster Physics Group of the MPI for Astronomy, University of Jena, Helmholtzweg 3, 07743 Jena, Germany
| | - Martin Kuhn
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Elisabeth Gruber
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Fabio Zappa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
- Department of Physics, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
15
|
Plasmonic Surface of Metallic Gold and Silver Nanoparticles Induced Fluorescence Quenching of Meso-Terakis (4-Sulfonatophenyl) Porphyrin (TPPS) and Theoretical-Experimental Comparable. J Fluoresc 2022; 32:2257-2269. [PMID: 36045307 PMCID: PMC9606071 DOI: 10.1007/s10895-022-03022-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Colloidal metallic nanoparticles have attracted a lot of interest in the last two decades owing to their simple synthesis and fascinating optical properties. In this manuscript, a study of the effect of both gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs) on the fluorescence emission (FE) of TPPS has been investigated utilizing steady-state fluorescence spectroscopy and UV–Vis spectrophotometry. From the observed electronic absorption spectra, there is no evidence of the ground state interaction between metallic Au NPs or Ag NPs with TPPS. On the other side, the FE spectra of TPPS have been quenched by both Ag and Au NPs. Via applying quenching calculations, Ag NPs showed only traditional static fluorescence quenching of TPPS with linear Stern–Volmer (SV) plots. On the contrary, quenching of TPPS emission by Au NPs shows composed models. One model is the sphere of action static quenching model that prevails at high quencher concentrations leading to non-linear SV plots with positive deviation. However, at low Au NPs concentrations, traditional dynamic quenching occurs with linear SV plots. The quantum calculations for TPPS structure have been obtained using Gaussian 09 software: in which the TPPS optimized molecular structure was achieved using DFT/B3LYP/6-311G (d) in a gaseous state. Also, the calculated electronic absorption spectra for the same molecule in water as a solvent are obtained using TD/M06/6-311G + + (2d, 2p). Furthermore, the theoretical and experimental results comparable to UV–Vis spectra have been investigated.
Collapse
|
16
|
Yang X, Elbert SM, Rominger F, Mastalerz M. A Series of Soluble Thieno-Fused Coronene Nanoribbons of Precise Lengths. J Am Chem Soc 2022; 144:9883-9892. [DOI: 10.1021/jacs.2c02645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xuan Yang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Zhang W, Liu G, Cao J, Chen Y, Gao L, Liu G, Dai G, Wang Q. Synthesis and Properties of BN-embedded N-Perylene. Chem Asian J 2022; 17:e202200340. [PMID: 35559597 DOI: 10.1002/asia.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Indexed: 11/11/2022]
Abstract
A B-N embedded nitrogen-annulated perylene has been successfully synthesized. The resultant molecule BN-NP is isoelectronic to coronene , but owns a five-membered pyrrole ring. Experiments and DFT calculations indicated that peripheral pyrrole and BN modifications endow BN-NP with various unique properties like bent structure, dual emission, efficient Lewis acidic response, peripheral aromaticity, narrowest energy band gap among all coronene isoelectronic structures and so on.
Collapse
Affiliation(s)
- Wenhao Zhang
- Inner Mongolia University, Chemistry and Chemical Engineering, CHINA
| | - Guiru Liu
- Inner Mongolia University, Chemistry and Chemical Engineering, CHINA
| | - Jing Cao
- Inner Mongolia University, Chemistry and Chemical Engineering, CHINA
| | - Yuanyuan Chen
- Hangzhou Normal University, Material, Chemistry and Chemical Engineering, CHINA
| | - Lei Gao
- Inner Mongolia University, Chemistry and Chemical Engineering, CHINA
| | - Guanghua Liu
- Inner Mongolia University, Chemistry and Chemical Engineering, CHINA
| | - Gaole Dai
- Hangzhou Normal University, Material, Chemistry and Chemical Engineering, CHINA
| | - Qing Wang
- Inner Mongolia University, Chemistry and Chemical Engineering, 235 West University Street, 010021, Hohhot, CHINA
| |
Collapse
|
18
|
Jiang Z, Zhou S, Jin W, Zhao C, Liu Z, Yu X. Synthesis, Structure, and Photophysical Properties of BN-Embedded Analogue of Coronene. Org Lett 2022; 24:1017-1021. [PMID: 35072476 DOI: 10.1021/acs.orglett.1c04161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two BN-embedded benzo[ghi]perylene (Bzp) and coronene derivatives (BN-Bzp and BN-Cor) have been successfully synthesized from binaphthyl precursors by new efficient one-pot-multibond routes, and their single crystal structures were analyzed. Both experimental spectra and DFT theoretical calculations indicated that the absorption and emission of these BN-embedded polycyclic aromatic hydrocarbons are significantly enhanced comparing with those of their all carbon analogues. Especially, the fluorescence quantum yield of BN-Cor is nearly 20 times higher than that of ordinary coronene.
Collapse
Affiliation(s)
- Zhen Jiang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Shimin Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Cuihua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Amigh S, Mohajeri A. Coronene-based quantum dots for the delivery of the doxorubicin anticancer drug: a computational study. NEW J CHEM 2022. [DOI: 10.1039/d2nj00636g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coronene family could serve as a useful platform for the delivery of and tracking the release of the anticancer DOX drug.
Collapse
Affiliation(s)
- Soode Amigh
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Afshan Mohajeri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| |
Collapse
|
20
|
Tsurusaki A, Kamikawa K. Multiple Helicenes Featuring Synthetic Approaches and Molecular Structures. CHEM LETT 2021. [DOI: 10.1246/cl.210409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
21
|
Yang X, Rominger F, Mastalerz M. Contorted Heteroannulated Tetraareno[a,d,j,m]coronenes. Chemistry 2021; 27:14345-14352. [PMID: 34374459 PMCID: PMC8596641 DOI: 10.1002/chem.202102112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/06/2022]
Abstract
Fused polycyclic aromatic compounds are interesting materials for organic electronics applications. To fine-tune photophysical or electrochemical properties, either various substituents can be attached or heteroatoms (such as N or S) can be incorporated into the fused aromatic backbone. Coronenes and heterocoronenes are promising compounds in this respect. Up until now, the possibilities for varying the attached fused heteroaromatics at the coronene core were quite limited, and realizing both electron-withdrawing and -donating rings at the same time was very difficult. Here, a series of pyridine, anisole and thiophene annulated tetraareno[a,d,j,m]coronenes has been synthesized by a facile two-step route that is a combination of Suzuki-Miyaura cross-coupling and a following cyclization step, starting from three different diarenoperylene dibromides. The contorted molecular π-planes of the obtained cata-condensed tetraarenocoronenes were analyzed by single-crystal X-ray crystallography, and the photophysical and electrochemical properties were systematically investigated by UV/Vis spectroscopy and cyclovoltammetry.
Collapse
Affiliation(s)
- Xuan Yang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|