1
|
Luis-Sunga M, González-Orive A, Calderón JC, Gamba I, Ródenas A, de Los Arcos T, Hernández-Creus A, Grundmeier G, Pastor E, García G. Nickel-Induced Reduced Graphene Oxide Nanoribbon Formation on Highly Ordered Pyrolytic Graphite for Electronic and Magnetic Applications. ACS APPLIED NANO MATERIALS 2024; 7:11088-11096. [PMID: 38808309 PMCID: PMC11131383 DOI: 10.1021/acsanm.3c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
The development of nanoribbon-like structures is an effective strategy to harness the potential benefits of graphenic materials due to their excellent electrical properties, advantageous edge sites, rapid electron transport, and large specific area. Herein, parallel and connected magnetic nanostructured nanoribbons are obtained through the synthesis of reduced graphene oxide (rGO) using NiCl2 as a precursor with potential applications in nascent electronic and magnetic devices. Several analytical techniques have been used for the thorough characterization of the modified surfaces. Atomic force microscopy (AFM) shows the characteristic topographical features of the nanoribbons. While X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy provided information on the chemical state of Ni and graphene-like structures, magnetic force microscopy (MFM) and scanning Kelvin probe microscopy (SKPFM) confirmed the preferential concentration of Ni onto rGO nanoribbons. These results indicate that the synthesized material shows 1D ordering of nickel nanoparticles (NiNPs)-decorating tiny rGO flakes into thin threads and the subsequent 2D arrangement of the latter into parallel ribbons following the topography of the HOPG basal plane.
Collapse
Affiliation(s)
- Maximina Luis-Sunga
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| | - Alejandro González-Orive
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
- Department
of Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany
| | - Juan Carlos Calderón
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
- Department
of Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany
| | - Ilaria Gamba
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| | - Airán Ródenas
- Departamento
de Física, Facultad de ciencias, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, S/N, La Laguna, Santa Cruz de Tenerife 38200, Spain
- Instituto
Universitario de Estudios Avanzados (IUdEA), Departamento de Física, Universidad de La Laguna, PO Box 456, La Laguna, Santa Cruz de Tenerife 38200, España
| | - Teresa de Los Arcos
- Department
of Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany
| | - Alberto Hernández-Creus
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| | - Guido Grundmeier
- Department
of Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany
| | - Elena Pastor
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| | - Gonzalo García
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| |
Collapse
|
2
|
Zhang F, Song Z, Hu W, Zhang Y. Identifying of Pure and Defected Ti2C Materials Using Gas Probe Molecules: First Principles Calculations. Chem Asian J 2022; 17:e202200416. [PMID: 35578749 DOI: 10.1002/asia.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Indexed: 11/12/2022]
Abstract
Employing first principles calculations, we systematically investigated the geometrical and electronic structures of pure, titanium defected (DTi) and carbon defected (DC) Ti2C materials. We found the defected Ti2C exhibits stronger metallic property than pure Ti2C due to the enhanced density of Ti-d orbital state near the Fermi level. We then studied the adsorption as well as the infrared spectrum (IR) response of the four kinds of gas molecules (CH4 , NH3 , CO and NO) on pure, DTi and DC Ti2C surfaces. Simulations show that CO and NO molecules are chemically adsorbed on all Ti2C surface with similar adsorption sites. However, CH4 and NH3 molecules would be dissociated on Ti2C surface. Negative values of crystal orbital Hamilton population as well as the PDOS calculations show that the red shift in IR spectra of CO and NO molecules originates from the decreasing bonding strength of probe molecules. The present work provides rich insight for the adsorption and identification for different Ti2C materials.
Collapse
Affiliation(s)
- Fengxiang Zhang
- Qilu University of Technology, Shandong Provincial Key Laboratory of Molecular Engineering. School of Chemistry and Chemical Engineering, CHINA
| | - Ziyue Song
- The University of British Columbia, Department of Chemical and Biological Engineering, CANADA
| | - Wei Hu
- Qilu University of Technology, School of Chemistry and Chemical Engineering, 3501 University Road, 250353, Jinan, CHINA
| | - Yujin Zhang
- Qilu University of Technology, School of Electronic and Information Engineering (Department of Physics), CHINA
| |
Collapse
|