1
|
Das B. Unveiling mechanistic insights and applications of aggregation-enhanced emission (AEE)-active polynuclear transition metal complexes. Chem Commun (Camb) 2025; 61:6391-6416. [PMID: 40176728 DOI: 10.1039/d5cc00690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Aggregation-enhanced emission (AEE) in polynuclear transition metal complexes (PTMCs) represents a major advancement in luminescent materials, overcoming the limitations of aggregation-caused quenching (ACQ) in traditional systems. Unlike conventional materials that suffer from quenching, AEE-active PTMCs exhibit enhanced luminescence in the aggregated state, driven by mechanisms such as restricted molecular motion, π-π stacking, and metal-metal interactions. These properties make PTMCs highly versatile for applications including chemical sensing, bioimaging, photodynamic therapy (PDT), optoelectronics (e.g., OLEDs, WOLEDs, and LEDs), and security technologies (e.g., anti-counterfeiting inks). They enable the sensitive detection of pollutants, facilitate high-performance bioimaging, and enhance the efficiency of energy devices. However, PTMCs face several challenges, including complex synthesis, limited thermal and photostability, solubility issues, and environmental and toxicity concerns. Additionally, high production costs, instability in different media, and the need for optimized energy transfer efficiency must be addressed to enhance their practical performance. This review explores the mechanisms behind AEE in PTMCs and discusses strategies for overcoming these challenges, including ligand engineering, hybrid material development, and sustainable synthesis methods. It also highlights their potential in advancing energy-efficient technologies, precision therapeutics, and secure communication systems, contributing to a more sustainable and innovative future.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, India.
| |
Collapse
|
2
|
Fischer AC, Förster C, Kitzmann WR, Heinze K. A Blessing and a Curse: Remote Ligand Functionalization Modulates 3MLCT Relaxation in Group 6 Tricarbonyl Complexes. Inorg Chem 2025; 64:6100-6114. [PMID: 39998430 DOI: 10.1021/acs.inorgchem.4c05383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
We recently reported a molecular design for carbonylpyridine molybdenum(0) complexes that unlocks long-lived luminescent and photoactive charge-transfer states. Here, we translate this strategy to chromium(0), and tungsten(0) and report three fully characterized tricarbonyl metal(0) complexes featuring a tripodal ligand with a remote n-butyl substituent in the backbone. All complexes show phosphorescence in the red to near-infrared spectral region from metal-to-ligand charge-transfer excited states. Surprisingly, the alkyl chain significantly affects excited state relaxation: lifetimes are shortened in solution but extended in the solid state by one order of magnitude compared to the molybdenum(0) complex with a methyl substituent. Temperature-dependent luminescence and NMR spectroscopy in combination with quantum chemical calculations reveal the reasons for these disparate effects. The n-butyl substituent distorts the metal coordination geometry. The resulting structural flexibility flattens the potential energy surfaces in solution, which lowers the barrier for the population of distorted metal-centered states and facilitates nonradiative relaxation. In the solid state, the rigidified alkyl chain separates neighboring molecules, which reduces self-quenching. Our study sheds light on the relationship between structure and excited state relaxation to inform the development of photoactive complexes based on earth-abundant metals.
Collapse
Affiliation(s)
- Alexander C Fischer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
3
|
Ying A, Li N, Chen X, Xia J, Yang C, Gong S. Ag(i) emitters with ultrafast spin-flip dynamics for high-efficiency electroluminescence. Chem Sci 2025; 16:784-792. [PMID: 39634582 PMCID: PMC11613957 DOI: 10.1039/d4sc04607b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Carbene-metal-amide (CMA) complexes are appealing emitters for organic light-emitting diodes (OLEDs). However, little is known about silver(i)-CMA complexes, particularly electroluminescent ones. Here we report a series of Ag(i)-CMA complexes prepared using benzothiophene-fused carbazole derivatives as amide ligands. These complexes emit via thermally activated delayed fluorescence (TADF), together with high photoluminescence quantum yields of up to 72% in thin films. By strengthening the π-donating ability of the amide ligands, ultrashort emission lifetimes of down to 144 ns in thin films and 11 ns in solution (with a radiative rate constant of ∼107 s-1) are realized, among the shortest lifetimes for TADF emitters. Key to this unique feature is the ultrafast spin-flip dynamics consisting of forward and reverse intersystem crossing rates of up to ∼109 s-1 and ∼108 s-1, respectively, verified by the transient absorption spectroscopic study. The resulting solution-processed OLEDs based on the optimal complex afford record external quantum efficiencies of 16.2% at maximum and 13.4% at 1000 nits, representing the state-of-the-art performance for Ag(i) emitters. This work presents an effective approach for the development of short-lived TADF materials for high-efficiency OLEDs.
Collapse
Affiliation(s)
- Ao Ying
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Xingyu Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, International School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, International School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Shaolong Gong
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China
| |
Collapse
|
4
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
5
|
Chen Z, Xu W, Zhu R, Liu L, Zhong XX, Li FB, Zhou G, Qin HM. Heteroleptic mononuclear Cu(I) halide complexes containing carbazolyl substituted phenyl diphosphine and monophosphine: structures and photophysical and electroluminescent properties. Dalton Trans 2024; 53:19299-19313. [PMID: 39508258 DOI: 10.1039/d4dt02469a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
How to obtain heteroleptic mononuclear Cu(I) halide complexes with high quantum efficiency and short decay lifetime remains a challenge. Here, seven mononuclear four-coordinate Cu(I) halide complexes [CuX(DCzDP)(PPh3)] (DCzDP = 1,2-bis(9-carbazolyl)-4,5-bis(diphenylphosphino)benzene, X = Br (1), Cl (2)), [CuX(DCzDP)(CzP)] (CzP = 9-methyl-3-(diphenylphosphino)carbazole, X = I (3), Br (4), Cl (5)) and [CuX(DCzDP)(DCzP)] (DCzP = bis(9-methyl-3-carbazolyl)phenylphosphine, X = I (6), Br (7)), were synthesized and their structures and photophysical properties were characterized. At room temperature, complexes 1-7 in the powder state emit a yellowish green to yellow green delayed fluorescence (λem = 531-560 nm, Φ = 0.34-0.75, τ = 1.8-2.9 μs). By replacing one phenyl group of PPh3 with a 9-methyl-3-carbazolyl group, the PLQYs (photoluminescence quantum yields) of the complexes are effectively improved and the decay lifetimes are only around 2.0 μs. Among them, complex 4 displays the highest PLQY (0.75) and a short decay lifetime (1.9 μs). The radiative decay rate (kr) is 3.95 × 105 s-1, which is the highest value among the reported heteroleptic mononuclear Cu(I) halide complexes and comparable with that of Ir(III) complexes. Solution-processed organic light-emitting devices that contain complex 4 exhibit greenish yellow fluorescence with a maximum external quantum efficiency (EQE) of 6.56% and a maximum luminance of 3364 cd m-2.
Collapse
Affiliation(s)
- Zhun Chen
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China.
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China.
| | - Ruiqin Zhu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Li Liu
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China.
| | - Xin-Xin Zhong
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China.
| | - Fa-Bao Li
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China.
| | - Guijiang Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Hai-Mei Qin
- Department of Chemistry, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
6
|
Baranova KF, Titov AA, Shakirova JR, Baigildin VA, Smol'yakov AF, Valyaev DA, Ning GH, Filippov OA, Tunik SP, Shubina ES. Substituents' Effect on the Photophysics of Trinuclear Copper(I) and Silver(I) Pyrazolate-Phosphine Cages. Inorg Chem 2024; 63:16610-16621. [PMID: 39193933 DOI: 10.1021/acs.inorgchem.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A series of structurally similar trinuclear macrocyclic copper(I) and silver(I) pyrazolate complexes bearing various short-bite diphosphine R2PCH(R')PR2 ligands are reported. Upon diphosphine coordination, the planar geometry of the initial complexes undergoes bending along the line between two metal atoms coordinated to the phosphorus moieties. The complexes based on dcpm ligands (R = cyclohexyl, R' = H, Ph) do not exhibit dynamic behavior in solution at room temperature on the 31P NMR time scale as it was previously observed for similar trinuclear copper complexes bearing the dppm (R = Ph, R' = H) scaffold. All copper(I) complexes exhibit thermally activated delayed fluorescence (TADF) behavior in the solid state. Importantly, the use of aliphatic substituents on the phosphorus atoms instead of aromatic ones leads to an almost double increase in the quantum efficiency (ΦPL) of photoluminescence by eliminating nonradiative decay from the 3LCPh states of the dppm aromatic rings. The higher donating ability of the substituents in the pyrazolate ligand (CF3 vs CH3) lowers the energy of the metal-centered excited state, allowing for a significant metal impact on the T1 state. Finally, the Ag(I) complex displays an emission efficiency of approximately 14%, being the highest among known trinuclear silver(I) pyrazolate homometallic derivatives.
Collapse
Affiliation(s)
- Kristina F Baranova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Aleksei A Titov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russia
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| |
Collapse
|
7
|
McEllin A, Goult CA, Mohiuddin G, Curtis LJ, Tanner TFN, Whitwood AC, Lynam JM, Bruce DW. Gold(III), Mercury(II), and Palladium(II) Complexes of a Series of Isomeric Bis(mono- and dialkoxyphenyl)pyridines: Introduction of Gold through Transmetalation and Catalysis. Inorg Chem 2024; 63:7589-7603. [PMID: 38635870 PMCID: PMC11061838 DOI: 10.1021/acs.inorgchem.3c03791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
A series of isomeric bis-2,6-(monoalkoxyphenyl)pyridine and bis-2,6-(dialkoxyphenyl)pyridine ligands were synthesized and characterized. In order to prepare their chlorogold(III) complexes, intermediate chloromercury(II) complexes were first prepared, but unlike observations from previous studies where they were obtained impure and at best in moderate yield, here pure complexes were synthesized, many in rather high yields. Depending on the substitution pattern of the alkoxy chains on the ligands, mono- and/or dimercurated complexes were obtained, characterized by 1H, 13C{1H}, and 199Hg NMR spectroscopy as well as, in several cases, by X-ray crystallography. Factors that may explain this unusual reactivity are discussed. In most cases, transmetalation to the related chlorogold(III) complex proceeded smoothly, although lower yields were obtained when starting from doubly mercurated precursors. Prompted by the propensity of these ligands to mercurate, attempts were made to effect direct auration, but none was successful. However, dimeric, orthometalated complexes of palladium(II) could be prepared and were also amenable to transmetalation to the chlorogold(III) complex, providing for a mercury-free synthesis.
Collapse
Affiliation(s)
- Alice
Jane McEllin
- Department
of Chemistry, University of York Heslington, YORK YO10 5DD, U.K.
| | | | - Golam Mohiuddin
- Department
of Chemistry, University of York Heslington, YORK YO10 5DD, U.K.
- Department
of Chemistry, University of Science &
Technology Meghalaya, Ri-Bhoi, Meghalaya 793101, India
| | - Liam J. Curtis
- Department
of Chemistry, University of York Heslington, YORK YO10 5DD, U.K.
| | - Theo F. N. Tanner
- Department
of Chemistry, University of York Heslington, YORK YO10 5DD, U.K.
| | - Adrian C. Whitwood
- Department
of Chemistry, University of York Heslington, YORK YO10 5DD, U.K.
| | - Jason M. Lynam
- Department
of Chemistry, University of York Heslington, YORK YO10 5DD, U.K.
| | - Duncan W. Bruce
- Department
of Chemistry, University of York Heslington, YORK YO10 5DD, U.K.
| |
Collapse
|
8
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Posada Urrutia M, Kaul N, Kaper T, Hurrell D, Chiang L, Wells JAL, Orthaber A, Hammarström L, Pilarski LT, Dyrager C. Access to long-lived room temperature phosphorescence through auration of 2,1,3-benzothiadiazole. Dalton Trans 2024; 53:5658-5664. [PMID: 38441110 DOI: 10.1039/d4dt00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A series of 2,1,3-benzothiadiazole-Au(I)-L complexes have been synthesised, structurally characterised and investigated for their photophysical properties. These are the first organometallic Au(I) complexes containing a C-Au bond on the highly electron-deficient benzothiadiazole unit. The complexes exhibit solution-phase phosphorescence at room temperature, assigned to the intrinsic triplet state of the benzothiadiazole unit that is efficently populated through its attachment to gold. Comparison with routinely reported Au(I) complexes, which include intervening alkenyl linkers, suggests that previous assignments of their phosphorescence as 1π → π*(CCR) might be incomplete. Our observations affirm that, in addition to the heavy atom effect, breaking symmetry in the involved aryl motif may be of importance in controlling the luminescence properties.
Collapse
Affiliation(s)
| | - Nidhi Kaul
- Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Tobias Kaper
- Department of Chemistry-BMC, Uppsala University, Box 576 751 23, Uppsala, Sweden.
| | - Dustin Hurrell
- Department of Chemistry, University of the Fraser Valley, V2S7M8, Abbotsford, BC, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, V2S7M8, Abbotsford, BC, Canada
| | - Jordann A L Wells
- Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Lukasz T Pilarski
- Department of Chemistry-BMC, Uppsala University, Box 576 751 23, Uppsala, Sweden.
| | - Christine Dyrager
- Department of Chemistry-BMC, Uppsala University, Box 576 751 23, Uppsala, Sweden.
| |
Collapse
|
10
|
Song XF, Peng LY, Chen WK, Gao YJ, Cui G. Theoretical studies on thermally activated delayed fluorescence of "carbene-metal-amide" Cu and Au complexes: geometric structures, excitation characters, and mechanisms. Phys Chem Chem Phys 2023; 25:29603-29613. [PMID: 37877743 DOI: 10.1039/d3cp03444e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, i.e., cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism. It is found that the coplanar or perpendicular conformations are coexistent in the ground state (S0), the lowest excited singlet state (S1), and the triplet state (T1). Both the coplanar and perpendicular S1 and T1 states have similar ligand-to-ligand charge transfer (LLCT) character between CAAC and Cz, and some charge-transfer character between metal atoms and ligands, which is beneficial to minimize the singlet-triplet energy gaps (ΔEST) and increase the spin-orbit coupling (SOC). An interesting three-state (S0, S1, T1) model involving two regions (coplanar and perpendicular) is proposed to rationalize the experimental TADF phenomena in the CMA complexes. In addition to the coplanar ones, the perpendicular S1 and T1 states also play a role in promoting the repopulation of the coplanar S1 exciton, which is a primary source for the delayed fluorescence.
Collapse
Affiliation(s)
- Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yuan-Jun Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
11
|
Ying A, Gong S. A Rising Star: Luminescent Carbene-Metal-Amide Complexes. Chemistry 2023; 29:e202301885. [PMID: 37431981 DOI: 10.1002/chem.202301885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Coinage metal (gold, silver, and copper) complexes are attractive candidates to substitute the widely studied noble metal complexes, such as, iridium(III) and platinum(II), as luminescent materials in organic light-emitting diodes (OLEDs). However, the development of coinage metal complexes exhibiting high emission quantum yields and short exciton lifetimes is still a formidable challenge. In the past few years, coinage metal complexes featuring a carbene-metal-amide (CMA) motif have emerged as a new class of luminescent materials in OLEDs. Thanks to the coinage metal-bridged linear geometry, coplanar conformation, and the formation of excited states with dominant ligand-to-ligand charge transfer character and reduced metal d-orbital participation, most CMA complexes have high radiative rates via thermally activated delayed fluorescence. Currently, the family of CMA complexes have rapidly evolved and remarkable progresses in CMA-based OLEDs have been made. Here, a Concept article on CMA complexes is presented, with a focus on molecular design principles, the correlation between molecular structure/conformation and optoelectronic properties, as well as OLED performance. The future prospects of CMA complexes are also discussed.
Collapse
Affiliation(s)
- Ao Ying
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
12
|
Kitzmann WR, Hunger D, Reponen APM, Förster C, Schoch R, Bauer M, Feldmann S, van Slageren J, Heinze K. Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby. Inorg Chem 2023; 62:15797-15808. [PMID: 37718553 DOI: 10.1021/acs.inorgchem.3c02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - David Hunger
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Roland Schoch
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Sascha Feldmann
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
13
|
Song C, An L, Wang Q, Zhang H, Li G. Unraveling the Marked Differences of the Excited-State Properties of Arylgold(III) Complexes with C ∧N ∧C Tridentate Ligands. Inorg Chem 2023; 62:15382-15391. [PMID: 37700580 DOI: 10.1021/acs.inorgchem.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Three structurally similar gold(III) complexes with C∧N∧C tridentate ligands, [1; C∧N∧C = 2,6-diphenylpyridine], [2; C∧N∧C = 2,6-diphenylpyrazine], and [3; C∧N∧C = 2,6-diphenyltriazine], have been investigated theoretically to rationalize the marked difference in emission behaviors. The geometrical and electronic structures, spectra properties, radiative and nonradiative decay processes, as well as reverse intersystem crossing and reverse internal conversion (RIC) processes were thoroughly analyzed using density functional theory (DFT) and time-dependent DFT calculations. The computed results indicate that there is a small energy difference Δ E T 1 - T 1 ' between the lowest-energy triplet state (T1) and the second lowest-energy triplet state (T1') of complexes 2 and 3, suggesting that the excitons in the T1 state can reach the emissive higher-energy T1' through the RIC process. In addition, the non-emissive T1 states of gold(III) complexes in solution can be ascribed to the easily accessible metal-centered (3MC) state or possibly tunneling into high-energy vibrationally excited singlet states for nonradiative decay. The low efficiency of 3 is attributed to the deactivation pathway via the 3MC state. The present study elucidates the relationship between structure and property of gold(III) complexes featuring C∧N∧C ligands and providing a comprehensive understanding of the significant differences in their luminescence behaviors.
Collapse
Affiliation(s)
- Chongping Song
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Lin An
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Qinggao Wang
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guoqiang Li
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
14
|
Li X, Tu L, Gao M, Li A, Chen Y, Chi W, Zhang D, Duan L, Xie Y, Tang BZ, Li Z. Highly Efficient Blue Organic Light Emitting Diodes Based on Cyclohexane-Fused Quinoxaline Acceptor. J Phys Chem Lett 2023; 14:6982-6989. [PMID: 37523259 DOI: 10.1021/acs.jpclett.3c01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Exploring blue organic light emitting diodes (OLED) is an important but challenging issue. Herein, to achieve blue-shifted emission, cyclohexane is fused to quinoxaline to weaken the electron-withdrawing ability and conjugation degree of the acceptor. As a result, blue to cyan fluorescent emitters of Me-DPA-TTPZ, tBu-DPA-TTPZ, and TPA-TTPZ were designed and synthesized with donors of diphenylamine and triphenylamine, which exhibit high photoluminescence quantum yields and good thermal stability. In OLEDs with emitters of TPA-TTPZ, the sensitized and nonsensitized devices demonstrate deep-blue (449 nm) and blue (468 nm) emission with maximum external quantum efficiency and CIE coordinates of 6.1%, (0.15, 0.10) and 5.1%, (0.17, 0.22), respectively, validating their potential as blue emitters in OLEDs.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Aisen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, China
| | - Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou 570228, China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ben Zhong Tang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Kokina TE, Shekhovtsov NA, Vasilyev ES, Glinskaya LA, Mikheylis AV, Plyusnin VF, Tkachev AV, Bushuev MB. Efficient emission of Zn(II) and Cd(II) complexes with nopinane-annelated 4,5-diazafluorene and 4,5-diazafluoren-9-one ligands: how slight structural modification alters fluorescence mechanism. Dalton Trans 2023. [PMID: 37183960 DOI: 10.1039/d3dt00904a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Zinc(II) and cadmium(II) chlorido complexes with an N,N-chelating nopinane-annelated 4,5-diazafluoren-9-one ligand (LO) were synthesized. While the zinc(II) complex is mononuclear and adopts a tetrahedral ZnN2Cl2 coordination geometry, its cadmium(II) analogue features a 1D polymeric structure due to the bridging coordination of chlorido ligands with Cd2+ ions having an octahedral CdN2Cl4 coordination geometry. The photophysical properties of the oxygen-containing LO ligand and its zinc(II) and cadmium(II) complexes were studied in solution and in the solid state and matched against the properties of its oxygen-free 4,5-diazafluorene congener L and its complexes of the same metal ions. Comprehensive experimental and theoretical studies revealed the impact of the oxygen atom in the ligand core on the luminescence of the ligands and the complexes. For the oxygen-free L ligand and L-based complexes, the structural differences between the S0 and S1 geometries are small, which leads to fluorescence with extraordinarily small Stokes shifts. The emission of these compounds is of locally excited character for L and of mixed locally excited + ligand-to-halide charge transfer character for the L-based complexes. The introduction of the oxygen atom in the ligand core results in a drastic red-shift of the emission band due to short-range charge transfer. The differences between the S0 and S1 geometries are much more pronounced for LO and LO-based compounds than those of their oxygen-free analogues, leading to an order of magnitude larger Stokes shifts. On going from solution to the solid state, LO and its complexes exhibit aggregation-induced emission (AIE) behaviour with photoluminescence quantum yields (PLQYs) reaching tens of percent.
Collapse
Affiliation(s)
- Tatyana E Kokina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Nikita A Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Eugene S Vasilyev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Ludmila A Glinskaya
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Aleksandr V Mikheylis
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, 3, Institutskaya str., Novosibirsk, 630090, Russia.
| | - Victor F Plyusnin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, 3, Institutskaya str., Novosibirsk, 630090, Russia.
| | - Alexey V Tkachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Mark B Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| |
Collapse
|
16
|
Zhang YL, He TF, Zhao ZK, Shen A, Gao Q, Ren AM, Su ZM, Li H, Chu HY, Zou LY. Self-Consistent Quantum Mechanics/Embedded Charge Study on Aggregation-Enhanced Delayed Fluorescence of Cu(I) Complexes: Luminescence Mechanism and Molecular Design Strategy. Inorg Chem 2023; 62:7753-7763. [PMID: 37154416 DOI: 10.1021/acs.inorgchem.3c00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To elucidate the luminescence mechanism of highly efficient blue Cu(N^N)(POP)+-type thermally activated delayed fluorescence (TADF) materials, we have selected Cu(pytfmpz)(POP)+ (1) and Cu(pympz)(POP)+ (2) as targets to investigate the photophysical properties in both solution and solid phases. The self-consistent electrostatic potential (ESP) embedded charge within the quantum mechanics/molecular mechanics (QM/MM) method demonstrates a greater advantage over the charge equilibrium (QEQ) in accurately calculating atomic charges and reasonably describing the polarization effect, ultimately resulting in a favorable consistency between simulation and experimental measurements. After systematic and quantitative simulation, it has been found that complex 2, with an electron-donating group of -CH3, exhibits a much more blue-shifted spectrum and a significantly enhanced efficiency in comparison to complex 1 with -CF3. This is due to the widened HOMO-LUMO gap as well as the narrowed energy gap between the lowest singlet and triplet excited states (ΔEST), respectively. Then, the designed complex 3 is introduced with a stronger electron donor and larger tert-butyl group, which plays a key role in simultaneously suppressing the structural distortion and reducing the ΔEST. This leads to a faster reverse intersystem crossing process than that of the two experimental complexes in solution, turning out to be a new deep-blue-emitting material with excellent TADF performance.
Collapse
Affiliation(s)
- Yun-Li Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Teng-Fei He
- College of Chemistry, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300350 Tianjin, China
| | - Zi-Kang Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ao Shen
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Qiang Gao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui-Ying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Lu-Yi Zou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
17
|
Perspectives on the Structural Design and Luminescent Behavior of Liquid Crystalline Materials Based on Copper(I) Complexes. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
This paper provides insight into the various studies that have been carried out to date on liquid crystalline materials based on copper(I) complexes. Although the study of copper(I) complexes with respect to their liquid crystalline property is quite limited, metallomesogens prepared with different structural components and ligands from groups such as azamacrocycles, alkythiolates, ethers, isocyanides, phenanthroline, Schiff bases, pyrazolates, phosphines, biquinolines, and benzoylthioureas are reported and summarized in this review. A special section is dedicated to the discussion of emission properties of copper(I) metallomesogens.
Collapse
|
18
|
Osawa M, Soma S, Kobayashi H, Tanaka Y, Hoshino M. Near-white light emission from single crystals of cationic dinuclear gold(I) complexes with bridged diphosphine ligands. Dalton Trans 2023; 52:2956-2965. [PMID: 36648762 DOI: 10.1039/d2dt03785h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three cationic dinuclear Au(I) complexes containing acetonitrile (AN) as an ancillary ligand were synthesized: [μ-LMe(AuAN)2]·2BF4 (1), [μ-LEt(AuAN)2]·2BF4 (2), and [μ-LiPr(AuAN)2]·2BF4 (3) (LMe = {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt = {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr = {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene}). The unique structures of complexes 1-3 with two P-Au(I)-AN rods bridged by rigid diphosphine ligands were determined through X-ray analysis. The Au(I)-Au(I) distances observed for complexes 1-3 were as short as 2.9804-3.0457 Å, indicating an aurophilic interaction between two Au(I) atoms. Unlike complexes 2 and 3, complex 1 incorporated CH2Cl2 into the crystals as crystalline solvent molecules. Luminescence studies in the crystalline state revealed that complexes 1 and 2 mainly exhibited bluish-purple phosphorescence (PH) at 293 K: the former had a PH peak wavelength at 415 nm with the photoluminescence quantum yield ΦPL = 0.12, and the latter at 430 nm with ΦPL = 0.13. Meanwhile, complex 3 displayed near-white PH, that is dual PH with two PH bands centered at 425 and 580 nm with ΦPL = 0.44. The PH spectra and lifetimes of complexes 2 and 3 were measured in the temperature range of 77-293 K. The two PH bands observed for complex 3 were suggested to originate from the two emissive excited triplet states, which were in thermal equilibrium. From theoretical calculations, the dual PH observed for complex 3 is explained to occur from the two excited triplet states, T1H and T1L: the former exhibits a high-energy PH band (bluish-purple) and the latter exhibits a low-energy PH band (orange). The T1H state is considered 3ILCT with a structure similar to that of the S0-optimized structure. Conversely, the T1L state is assumed to be a 3MLCT with a T1-optimized structure, which has a short Au(I)-Au(I) bond and two bent rods (Au-AN). The thermal equilibrium between the two excited states is discussed based on computational calculations and photophysical data in the temperature range of 77-293 K. With regard to the crystal of complex 1, we were unable to precisely measure the temperature-dependent emission spectra and lifetimes, particularly at low temperatures, because the cooled crystals became irreversibly turbid over time.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Sakie Soma
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Hiroyuki Kobayashi
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Mikio Hoshino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| |
Collapse
|
19
|
Naithani S, Goswami T, Thetiot F, Kumar S. Imidazo[4,5-f][1,10]phenanthroline based luminescent probes for anion recognition: Recent achievements and challenges. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Sokolova E, Kinzhalov MA, Smirnov AS, Cheranyova AM, Ivanov DM, Kukushkin VY, Bokach NA. Polymorph-Dependent Phosphorescence of Cyclometalated Platinum(II) Complexes and Its Relation to Non-covalent Interactions. ACS OMEGA 2022; 7:34454-34462. [PMID: 36188282 PMCID: PMC9520548 DOI: 10.1021/acsomega.2c04110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Cyclometalated platinum(II) complexes [Pt(ppy)Cl(CNAr)] (ppy = 2-phenylpyridinato-C2,N; Ar = C6H4-2-I 1, C6H4-4-I 2, C6H3-2-F-4-I 3, and C6H3-2,4-I2 4) bearing ancillary isocyanide ligands were obtained by the bridge-splitting reaction between the dimer [Pt(ppy)(μ-Cl)]2 and 2 equiv any one of the corresponding CNAr. Complex 2 was crystallized in two polymorphic forms, namely, 2 I and 2 II, exhibiting green (emission quantum yield of 0.5%) and orange (emission quantum yield of 12%) phosphorescence, respectively. Structure-directing non-covalent contacts in these polymorphs were verified by a combination of experimental (X-ray diffraction) and theoretical methods (NCIplot analysis, combined electron localization function (ELF), and Bader quantum theory of atoms in molecules (QTAIM analysis)). A noticeable difference in the spectrum of non-covalent interactions of 2 I and 2 II is seen in the Pt···Pt interactions in 2 II and absence of these metallophilic contacts in 2 I. The other solid luminophores, namely, 1, 3 I-II, 4, and 4·CHCl3, exhibit green luminescence; their structures include intermolecular C-I···Cl-Pt halogen bonds as the structure-directing interactions. Crystals of 1, 2 I, 3 I, 3 II, 4, and 4·CHCl3 demonstrated a reversible mechanochromic color change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).
Collapse
Affiliation(s)
- Elina
V. Sokolova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Mikhail A. Kinzhalov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Andrey S. Smirnov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Anna M. Cheranyova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M. Ivanov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Vadim Yu. Kukushkin
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute
of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| | - Nadezhda A. Bokach
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| |
Collapse
|
21
|
Yamazaki Y, Ueshima Y, Mizumoto Y, Ishikawa Y, Maruyama R, Yoshino Y, Sofue Y, Tsubomura T. Crystal Structure and Photoluminescent Property of an Asymmetric Ag(I) Binuclear Complex. CHEM LETT 2022. [DOI: 10.1246/cl.220334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yasuomi Yamazaki
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| | - Yukinori Ueshima
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| | - Yoji Mizumoto
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| | - Yuri Ishikawa
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| | - Riku Maruyama
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| | - Yuki Yoshino
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| | - Yuki Sofue
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| | - Taro Tsubomura
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| |
Collapse
|
22
|
Asymmetric Thermally Activated Delayed Fluorescence Materials Rendering High-performance OLEDs Through both Thermal Evaporation and Solution-processing. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Zheng DS, Yang M, Wang JY, Chen ZN. Highly Phosphorescent Dimers of PtAu 2 Complexes and the Use in Solution-Processed OLEDs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23669-23677. [PMID: 35574829 DOI: 10.1021/acsami.2c01832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two asymmetric PtAu2 complexes having HC≡CC6H4C≡CH (1,4-diethynylbenzene) or HC≡CCarbC≡CH (2,7-diethynyl-9-(2,3,5,6-tetrafluorophenyl)-9H-carbazole) and the corresponding bis(acetylide)-linked Pt2Au4 complexes are prepared and characterized. The structures of PtAu2 complexes 1 and 3 together with Pt2Au4 complex 2 are determined by X-ray crystallography. Relative to PtAu2 complexes, bis(acetylide)-linked Pt2Au4 complexes not only display a distinct red shift of the emission but also provide a much higher phosphorescent efficiency. Utilizing highly emissive Pt2Au4 complexes as phosphorescent dopants, high-efficiency solution-processed OLEDs are obtained with peak current efficiency of 75.9 cd A-1 and external quantum efficiency of 19.0% at luminance of 336 cd m-2 and voltage of 5.2 V. When two PtAu2 moieties are linked by a bis(acetylide) ligand, the corresponding Pt2Au4 complexes show a much improved electroluminescent performance compared with that of asymmetric PtAu2 complexes.
Collapse
Affiliation(s)
- Da-Sheng Zheng
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ming Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhong-Ning Chen
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
24
|
Ferraro V, Baggio F, Castro J, Bortoluzzi M. Green phosphorescent Zn(II) halide complexes with N,N,N',N'‐tetramethyl‐P‐indol‐1‐ylphosphonic diamide as ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Valentina Ferraro
- Università Ca' Foscari Dipartimento di Scienze Molecolari e Nanosistemi Via Torino 155 30172 Venezia ITALY
| | - Filippo Baggio
- Università Ca' Foscari: Universita Ca' Foscari Dipartimento di Scienze Molecolari e Nanosistemi ITALY
| | - Jesús Castro
- Universidade de Vigo Departamento de Química Inorgánica 36310 Vigo SPAIN
| | - Marco Bortoluzzi
- CIRCC Consorzio Interuniversitario Reattività Chimica e Catalisi Via Celso Ulpiani 27 70126 Bari ITALY
| |
Collapse
|
25
|
Abstract
In molecular photochemistry, charge-transfer emission is well understood and widely exploited. In contrast, luminescent metal-centered transitions only came into focus in recent years. This gave rise to strongly phosphorescent CrIII complexes with a d3 electronic configuration featuring luminescent metal-centered excited states which are characterized by the flip of a single spin. These so-called spin-flip emitters possess unique properties and require different design strategies than traditional charge-transfer phosphors. In this review, we give a brief introduction to ligand field theory as a framework to understand this phenomenon and outline prerequisites for efficient spin-flip emission including ligand field strength, symmetry, intersystem crossing and common deactivation pathways using CrIII complexes as instructive examples. The recent progress and associated challenges of tuning the energies of emissive excited states and of emerging applications of the unique photophysical properties of spin-flip emitters are discussed. Finally, we summarize the current state-of-the-art and challenges of spin-flip emitters beyond CrIII with d2, d3, d4 and d8 electronic configuration, where we mainly cover pseudooctahedral molecular complexes of V, Mo, W, Mn, Re and Ni, and highlight possible future research opportunities.
Collapse
|
26
|
Castro J, Ferraro V, Bortoluzzi M. Visible-emitting Cu( i) complexes with N-functionalized benzotriazole-based ligands. NEW J CHEM 2022. [DOI: 10.1039/d2nj03165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate benzotriazole-based N-ligands are suited for the preparation of luminescent heteroleptic copper(i) complexes with noticeable emissions related to 3MLCT transitions.
Collapse
Affiliation(s)
- Jesús Castro
- Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais, 36310 Vigo, Galicia, Spain
| | - Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
27
|
Tudor CA, Iliş M, Secu M, Ferbinteanu M, Cîrcu V. Luminescent heteroleptic copper(I) complexes with phosphine and N-benzoyl thiourea ligands: Synthesis, structure and emission properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Kinzhalov MA, Grachova EV, Luzyanin KV. Tuning the luminescence of transition metal complexes with acyclic diaminocarbene ligands. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01288f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organometallics featuring acyclic diaminocarbene ligands have recently emerged as powerful emitters for use in electroluminescent technologies.
Collapse
Affiliation(s)
- Mikhail A. Kinzhalov
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | - Elena V. Grachova
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | | |
Collapse
|
29
|
Cheng G, Zhou D, Monkowius U, Yersin H. Fabrication of a Solution-Processed White Light Emitting Diode Containing a Single Dimeric Copper(I) Emitter Featuring Combined TADF and Phosphorescence. MICROMACHINES 2021; 12:1500. [PMID: 34945348 PMCID: PMC8703954 DOI: 10.3390/mi12121500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Luminescent copper(I) complexes showing thermally activated delayed fluorescence (TADF) have developed to attractive emitter materials for organic light emitting diodes (OLEDs). Here, we study the brightly luminescent dimer Cu2Cl2(P∩N)2 (P∩N = diphenylphosphanyl-6-methyl-pyridine), which shows both TADF and phosphorescence at ambient temperature. A solution-processed OLED with a device structure ITO/PEDOT:PSS/PYD2: Cu2Cl2(P∩N)2/DPEPO (10 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (100 nm) shows warm white emission with moderate external quantum efficiency (EQE). Methods for EQE increase strategies are discussed.
Collapse
Affiliation(s)
- Gang Cheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, China
| | - Dongling Zhou
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | - Hartmut Yersin
- Institut für Physikalische Chemie, Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|