1
|
Chen Z, Shi Q, Yan H, Huang B, Song K, Cao K, Lu Y, Hu HY. Identification of correlation relationships and establishment of regression models among multiple microbial indicators in reclaimed waters. ENVIRONMENTAL RESEARCH 2025; 269:120896. [PMID: 39828189 DOI: 10.1016/j.envres.2025.120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Monitoring and controlling microbial water quality is crucial for ensuring water reuse safety. In particular, existing water reuse guidelines and regulations normally prescribed coliform bacteria as microbial indicators. However, the use of non-unified coliform groups may bring difficulties to compare and optimize the conformity efforts on microbial surveillance. This study has identified the correlation relationships in each pair of four microbial indicators in reclaimed waters, namely the heterotrophic plate counts (HPCs), total coliforms (TC), fecal coliforms (FC) and E. coli (r = 0.861-0.987). Ultimately, the built regression model for internal conversion is expressed as: log10HPC (MPN/mL) = 0.737 × log10TC (MPN/L) = 0.830 × log10FC (MPN/L) = 0.872 × log10E. coli (MPN/L) with further verification and validation. The developed model can be used to help water reuse regulators and practitioners improve the efficiency in universal microbial risk detection and management. Besides, the resistant microbes in HPCs (e.g. disinfection resistant bacteria and pathogens) after reclaimed water treatment and disinfection also call for future attention.
Collapse
Affiliation(s)
- Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Han Yan
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Banghao Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Keying Song
- Basic Education School, Beijing Information Technology College, Beijing, 100070, PR China
| | - Kefan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China
| |
Collapse
|
2
|
Wells MJM, Chen JY, Bodycomb J, Wolgemuth D, Stretz HA, Zacheis GA, Bautista M, Bell KY. Multi-laser nanoparticle tracking analysis (NTA): A unique method to visualize dynamic (shear) and dynamic (Brownian motion) light scattering and quantify nonliving natural organic matter (NNOM) in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174985. [PMID: 39047837 DOI: 10.1016/j.scitotenv.2024.174985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Application of simultaneous multi-laser nanoparticle tracking analysis (NTA) to environmental water samples to investigate nonliving natural organic matter (NNOM) is introduced as an innovative method for observing particles directly in their native media. Multi-laser NTA results of particle visualization, particle number concentration, and particle size distribution elucidated particle dynamics in low and high total dissolved solids (TDS) aqueous environmental samples. A pond water sample and concentrate from a reverse osmosis (RO) treatment process (Stage 1) had 1.3 × 108 and 5.62 × 1019 particles/mL, respectively, (at time = 0) after filtration at 0.45 μm. Beyond the traditional applications for this instrument, this research presents novel evidence-based investigations that probe the existence of supramolecular structures in environmental waters during turbulence or quiescence. The pond water sample exhibited time-dependent aggregation as the volume distribution shifted to greater diameter during quiescence, compared to turbulence. Disaggregation (increased numbers of particles over time) was noted in the >250 nm to <600 nm region, and aggregation of >450 nm particles was also noted in the quiescent RO concentrate sample, indicative of depletion of small particles to form larger ones. Multi-laser NTA and dynamic light scattering (DLS) capabilities were compared and contrasted. DLS and NTA are different (complementary) particle sizing techniques. DLS yielded more information about the physical hydrogel in the NNOM hierarchy whereas multi-laser NTA better characterized meta-chemical and chemical hydrogel characteristics. Operationalization of innovation-moving from fundamental investigations to application-is supported by implementing novel analytical instrumentation as we address issues involving climate change, drought, and the scarcity of potable water. Multi-laser NTA can be used as a tool to study and optimize complex water and wastewater treatment processes. Questions about water treatment efficiencies, membrane fouling, assistance of pollutant transport, and carbon capture cycles affected by NNOM will benefit from insights from multi-laser NTA.
Collapse
Affiliation(s)
| | | | - Jeff Bodycomb
- Horiba Instruments Incorporated, Piscataway, NJ, USA
| | | | | | | | - Mario Bautista
- Water Replenishment District of Southern California, Torrance, CA, USA
| | | |
Collapse
|
3
|
Chen X, Chen Z, Ngo HH, Mao Y, Cao K, Shi Q, Lu Y, Hu HY. Comparison of inactivation characteristics between Gram-positive and Gram-negative bacteria in water by synergistic UV and chlorine disinfection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122007. [PMID: 37302789 DOI: 10.1016/j.envpol.2023.122007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Disinfection is essential in water and wastewater treatment process as a guarantee for microbial safety. This study systematically investigated: (i) the inactivation characteristics of bacteria widely existed in water, including Gram-negative bacteria (Escherichiacoli) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis spores), by sequential UV and chlorine disinfection processes (UV-Cl and Cl-UV), simultaneous UV and chlorine disinfection process (UV/Cl); and (ii) the disinfection mechanisms on different bacteria. The combination of UV and chlorine disinfection could inactive bacteria at lower doses, but showed no synergistic effect on E. coli. Contrarily, disinfection results indicated that UV/Cl performed an obvious synergistic effect on highly disinfectant-resistant bacteria (e.g. S. aureus and B. subtilis spores). Specifically, UV/Cl at the UV dose of 9 mJ/cm2 and chlorine dose of 2 mg-Cl/L could inactivate S. aureus completely. Moreover, the effectiveness of UV/Cl on the removal of indigenous bacteria in actual water conditions was also confirmed. In short, the study provides significant theoretical and practical implications for ensuring microbial safety during water treatment and use.
Collapse
Affiliation(s)
- Xiaowen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Kefan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China
| |
Collapse
|
4
|
Shi Q, Chen Z, Wei F, Mao Y, Xu Q, Li K, Lu Y, Hu HY. Identification of surrogates for rapid monitoring of microbial inactivation by ozone for water reuse: A pilot-scale study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127567. [PMID: 34736205 DOI: 10.1016/j.jhazmat.2021.127567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The complex contaminants in reclaimed water sources and delayed feedback of microbial detection have brought tremendous challenges to disinfection process control. The identification of sensitive and online surrogates for indicating microbial inactivation efficacy is vital to evaluate and optimize the disinfection technologies and processes. This study analyzes the inactivation of microbial indicators during ozone disinfection at a pilot-scale study over 5 months. It is identified that total fluorescence (TF) intensity, ultraviolet absorbance at 254 nm (UV254) and intracellular adenosine triphosphate (cATP) concentration can act as surrogates in predicting microbial inactivation by ozone. Particularly, the empirical linear correlations for log removal values (LRV) of TF, UV254 and cATP concentration are developed for the inactivation of four widely applied microbial indicators, namely the total coliforms, fecal coliforms, Escherichia coli (E. coli) and heterotrophic plate count (HPC) (R2 = 0.86-0.96). Validation analyses are further conducted to verify the robustness and effectiveness of empirical models. Notably, TF is considered as the most efficient surrogate due to its high sensitivity, accuracy and reliability, whereas cATP concentration is an efficient supplement to directly reflect total microbial counts. The study is important to provide a rapid and reliable approach for ozone disinfection efficiency evaluation and prediction.
Collapse
Affiliation(s)
- Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Fanqin Wei
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qi Xu
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Kuixiao Li
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
5
|
Sgroi M, Snyder SA, Roccaro P. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation. CHEMOSPHERE 2021; 273:128527. [PMID: 33268086 DOI: 10.1016/j.chemosphere.2020.128527] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 05/19/2023]
Abstract
This work evaluated different advanced oxidation processes (AOPs) operated at pilot-scale as tertiary treatment of municipal wastewater in terms of energy efficiency, disinfection by-products formation and pathogens inactivation. Investigated AOPs included UV/H2O2, UV/Cl2, O3, O3/UV, H2O2/O3/UV, Cl2/O3/UV. AOPs were operated using various ozone doses (1.5-9 mg L-1), and UV fluences (191-981 mJ cm-2). Electrical energy costs necessary for the oxidation of contaminants of emerging concern (CEC) (i.e., carbamazepine, fluoxetine, gemfibrozil, primidone, sulfamethoxazole, trimethoprim) were calculated using the electrical energy per order (EEO) parameter. Ozonation resulted by far the most energy efficient process, whereas UV/H2O2 and UV/Cl2 showed the highest energy costs. Energy costs for AOPs based on the combination of UV and ozone were in the order O3/UV ≈ Cl2/O3/UV > H2O2/O3/UV, and they were significantly lower than energy costs of UV/H2O2 and UV/Cl2 processes. Cl2/O3/UV increased bromate formation, O3/UV and O3 had same levels of bromate formation, whereas H2O2/O3/UV did not form bromate. In addition, UV photolysis resulted an effective treatment for NDMA mitigation even in combination with ozone and chlorine in AOP technologies. Ozonation (doses of 1.5-6 mg L-1) was the least effective process to inactivate somatic coliphages, total coliform, escherichia coli, and enterococci. UV irradiation was able to completely inactivate somatic coliphages, total coliform, escherichia coli at low fluence (191 mJ cm-2), whereas enterococci were UV resistant. AOPs that utilized UV irradiation were the most effective processes for wastewater disinfection resulting in a complete inactivation of selected indicator organisms by low ozone dose (1.5 mg L-1) and UV fluence (191-465 mJ cm-2).
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore.
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|