1
|
Luo K, Dai RJ, Zeng YB, Chang WJ, Deng YL, Lv F. Triterpenoid saponins from Bupleurum marginatum and their anti-liver fibrotic activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:858-864. [PMID: 38572987 DOI: 10.1080/10286020.2024.2336150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
A new triterpenoid saponin (1), along with five known compounds (2-6), was isolated from Bupleurum marginatum Wall. ex DC, of which compounds 2-4 were obtained for the first time from this plant. The structures were confirmed by the analysis of 1D, 2D NMR, and HR-ESIMS data, and comparison with previous spectral data. Anti-liver fibrotic activities of the isolates were determined as proliferation inhibition of LPS-induced activation of HSC-T6 in vitro.
Collapse
Affiliation(s)
- Ke Luo
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rong-Ji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan-Bo Zeng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wen-Jun Chang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu-Lin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Liu C, Li S, Zhang C, Jin CH. Recent Advances in Research on Active Compounds Against Hepatic Fibrosis. Curr Med Chem 2024; 31:2571-2628. [PMID: 37497688 DOI: 10.2174/0929867331666230727102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity. OBJECTIVE The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs. METHODS According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds. RESULTS In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR). CONCLUSION Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Changhao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
3
|
Baokbah TAS. Attenuation of diethylnitrosamine-induced hepatocellular carcinoma in a rat model by combination therapy of diacerein and gold nanoparticles: a histopathological and immunohistochemical study. J Histotechnol 2023; 46:5-16. [PMID: 36214360 DOI: 10.1080/01478885.2022.2129935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The purpose of this study was to investigate the effect of combined therapy of diacerein and gold nanoparticles (AuNP) on diethylnitrosamine (DEN) induced hepatocellular carcinoma (HCC) in a rat model. Normal healthy and DEN-induced (HCC) rats were divided into five groups. Group I healthy rats served as normal control, Group II untreated HCC rats, Group III HCC rats administered diacerein, Group IV HCC rats administered AuNP, and Group V HCC rats administered diacerein and AuNP. All treatments were given once daily for 4 weeks. Liver morphology and necroinflammation in all groups were evaluated using hematoxylin and eosin (H&E), Masson's trichrome for fibrosis, and immunohistochemistry assays for expression of TNF-α, IL-6, β-catenin, and caspase-3. Liver sections from Group II HCC rats showed loss of lobular architecture, thick fibrous tissue deposition, leukocyte infiltration, degenerated hepatocytes and HCC neoplastic nodules surrounded by extensive fibrosis. Group II had high expression of TNF-α, IL-6, and β-catenin, and low caspase-3 expression as compared to Group I. HCC rats treated with the combined therapy of diacerein and AuNP (Group V) showed markedly decreased HCC lesions, significant necroinflammation reduction (p ˂ 0.05) and 90% reduction in fibrosis as compared to Group II HCC + diacerein. This combined therapy also reduced (p ˂ 0.05) TNF-α, IL-6, β-catenin expression and increased caspase-3 expression. In conclusion, diacerein combined with AuNP synergistically attenuated the severity of HCC lesions by reducing necroinflammation and fibrosis, decreased TNF-α, IL-6, β-catenin expression, and increased caspase-3 expression for apoptosis.
Collapse
Affiliation(s)
- Tourki A S Baokbah
- Department of Medical Emergency Services, Al-Qunfudah Health Sciences College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Abdo W, Haziri I, Dmerdash M, Alnasser SM, Hakamy A, Ali E, Soliman SA, Abd-Elhafeez HH, Abd-Eldayem AM. Anatabine attenuates ovalbumin-induced asthma via oxidative stress and inflammation mitigation and Nrf2/HO-1 signaling upregulation in rats. Life Sci 2022; 308:120954. [PMID: 36103960 DOI: 10.1016/j.lfs.2022.120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
AIMS Asthma affects a large number of people worldwide and is characterized by chronic allergic airway inflammation. Anatabine is a natural alkaloid that is structurally similar to nicotine and found in the Solanaceae family of plants, with anti-inflammatory properties. Consequently, this study aimed to evaluate the potential therapeutic effect of anatabine against asthma. MAIN METHODS Ovalbumin was used to induce asthma in rats. Two asthmatic groups were treated with low and high doses of anatabine. KEY FINDINGS Asthmatic animals experienced increased total leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF), bronchitis, and bronchopneumonia associated with mast cell infiltration. Additionally, inducible nitric oxide synthase immunostaining was observed, with decreased pulmonary antioxidant capacity and enzymes and decreased Nrf2 and HO-1 gene expression while increased NFκB-P65 expression. Interestingly, asthmatic animals treated with anatabine at both doses showed dose-dependently decreased inflammatory cells and cytokine levels within BALF reduced inflammation in the airways through decreased mast cell infiltration within lung tissues and increased antioxidant enzymes and Nrf2 and Ho-1 expression levels. SIGNIFICANCE Our results highlight the potential beneficial effect of anatabine against asthma through anti-inflammatory and antioxidant mechanisms. Therefore, anatabine is a promising candidate for pulmonary asthma treatment.
Collapse
Affiliation(s)
- Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Imer Haziri
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, University of Prishtina" Hasan Prishtin", 10000 Pristina, Kosovo.
| | - Mohamed Dmerdash
- Anatomy Department, Faculty of Medicine Al-Azhar University, Cairo 11884, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia.
| | - Ali Hakamy
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Ehab Ali
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Egypt.
| | | | - Ahmed M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
5
|
Li WQ, Liu WH, Qian D, Liu J, Zhou SQ, Zhang L, Peng W, Su L, Zhang H. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis. Front Pharmacol 2022; 13:962525. [PMID: 36081936 PMCID: PMC9445813 DOI: 10.3389/fphar.2022.962525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrosis (HF) refers to the pathophysiological process of connective tissue dysplasia in the liver caused by various pathogenic factors. Nowadays, HF is becoming a severe threat to the health of human being. However, the drugs available for treating HF are limited. Currently, increasing natural agents derived from traditional Chinese medicines (TCMs) have been found to be beneficial for HF. A systemic literature search was conducted from PubMed, GeenMedical, Sci-Hub, CNKI, Google Scholar and Baidu Scholar, with the keywords of "traditional Chinese medicine," "herbal medicine," "natural agents," "liver diseases," and "hepatic fibrosis." So far, more than 76 natural monomers have been isolated and identified from the TCMs with inhibitory effect on HF, including alkaloids, flavones, quinones, terpenoids, saponins, phenylpropanoids, and polysaccharides, etc. The anti-hepatic fibrosis effects of these compounds include hepatoprotection, inhibition of hepatic stellate cells (HSC) activation, regulation of extracellular matrix (ECM) synthesis & secretion, regulation of autophagy, and antioxidant & anti-inflammation, etc. Natural compounds and extracts from TCMs are promising agents for the prevention and treatment of HF, and this review would be of great significance to development of novel drugs for treating HF.
Collapse
Affiliation(s)
- Wen-Qing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Hao Liu
- Department of Pharmacy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Qiong Zhou
- Hospital of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang Q, Luo P, Zheng L, Chen J, Zhang J, Tang H, Liu D, He X, Shi Q, Gu L, Li J, Guo Q, Yang C, Wong YK, Xia F, Wang J. 18beta-Glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs. J Pharm Anal 2022; 12:570-582. [PMID: 36105163 PMCID: PMC9463498 DOI: 10.1016/j.jpha.2022.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/26/2022] Open
|
7
|
Li J, Guo C, Wu J. The Agonists of Peroxisome Proliferator-Activated Receptor-γ for Liver Fibrosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2619-2628. [PMID: 34168433 PMCID: PMC8219117 DOI: 10.2147/dddt.s310163] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Liver fibrosis is a common link in the transformation of acute and chronic liver diseases to cirrhosis. It is of great clinical significance to study the factors associated with the induction of liver fibrosis and elucidate the method of reversal. Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear transcription factors that can be activated by peroxisome proliferators. PPARs play an important role in fibrosis of various organs, especially the liver, by regulating downstream targeted pathways, such as TGF-β, MAPKs, and NF-κB p65. In recent years, the development and screening of PPAR-γ ligands have become a focus of research. The PPAR-γ ligands include synthetic hypolipidemic and antidiabetic drugs. In addition, microRNAs, lncRNAs, circRNAs and nano new drugs have attracted research interest. In this paper, the research progress of PPAR-γ in the pathogenesis and treatment of liver fibrosis was discussed based on the relevant literature in recent years.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China
| |
Collapse
|
8
|
Mohtashami M, Mohamadi M, Azimi‐Nezhad M, Saeidi J, Nia FF, Ghasemi A. Lactobacillus bulgaricus
and
Lactobacillus plantarum
improve diabetic wound healing through modulating inflammatory factors. Biotechnol Appl Biochem 2020. [DOI: 10.1002/bab.2064 10.1002/bab.2064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mahnaz Mohtashami
- Department of Microbilogy School of Basic Science Neyshabur Branch Islamic Azad University Neyshabur Iran
| | - Mahsa Mohamadi
- Department of Microbilogy School of Basic Science Neyshabur Branch Islamic Azad University Neyshabur Iran
| | - Mohsen Azimi‐Nezhad
- Non‐Communicable Disease Research Center Neyshabur University of Medical Sciences Neyshabur Iran
- UMR INSERM U 1122 IGE‐PCV Interactions Gène‐Environment En Physiopathologie Cardiovascular Université De Lorraine Nancy France
| | - Jafar Saeidi
- Department of Physiology School of Basic Science Neyshabur Branch Islamic Azad University Neyshabur Iran
| | - Fatemeh Forooghi Nia
- Department of Microbiology School of Basic Science Shiraz Branch Islamic Azad University Shiraz Iran
| | - Ahmad Ghasemi
- Department of Basic Sciences Neyshabur University of Medical Sciences Neyshabur Iran
- Healthy Ageing Research Centre Neyshabur University of Medical Sciences Neyshabur Iran
| |
Collapse
|
9
|
Mohtashami M, Mohamadi M, Azimi-Nezhad M, Saeidi J, Nia FF, Ghasemi A. Lactobacillus bulgaricus and Lactobacillus plantarum improve diabetic wound healing through modulating inflammatory factors. Biotechnol Appl Biochem 2020; 68:1421-1431. [PMID: 33125785 DOI: 10.1002/bab.2064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probiotics are nonpathogenic bacterial strains that exert beneficial effects on the host. Previous studies have shown that topical use of some strains of probiotic bacteria have good effects on the healing of cutaneous wounds. In the current study, the wound healing potentials of bacterial probiotics on diabetic cutaneous wounds were evaluated. The effects of probiotics on migration, the viability of fibroblasts, and macrophage proliferation were measured through using wound healing assay, methylthiazol tetrazolium assay, and bromodeoxyuridine, respectively. In this regard, in vivo diabetic wound healing experiments in Wistar rats following treatment with nontoxic concentrations of Lactobacillus bulgaricus and Lactobacillus plantarum were conducted. The histopathological and gene expression analyses were performed following removal of wound sites 3, 7, and 14 days postwounding. Results showed that treatment with probiotics accelerated the healing process of diabetic wounds and modulated the inflammatory cells in wound sites during a 14-day period postwounding. The altered mRNA levels of inflammatory cytokines were observed in wound sites following treatment with probiotics. The findings of the current study reveal that L. bulgaricus and L. plantarum could improve the healing of diabetic wounds via regulation of inflammation.
Collapse
Affiliation(s)
- Mahnaz Mohtashami
- Department of Microbilogy, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahsa Mohamadi
- Department of Microbilogy, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Fatemeh Forooghi Nia
- Department of Microbiology, School of Basic Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Ahmad Ghasemi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
10
|
Shan L, Liu Z, Ci L, Shuai C, Lv X, Li J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int Immunopharmacol 2019; 75:105765. [PMID: 31336335 DOI: 10.1016/j.intimp.2019.105765] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis is the most common pathological feature of most chronic liver diseases, and its continuous deterioration gradually develops into liver cirrhosis and eventually leads to liver cancer. At present, there are many kinds of drugs used to treat liver fibrosis. However, Western drugs tend to only target single genes/proteins and induce many adverse reactions. Most of the mechanisms and active ingredients of traditional Chinese medicine (TCM) are not clear, and there is a lack of unified diagnosis and treatment standards. Natural products, which are characterized by structural diversity, low toxicity, and origination from a wide range of sources, have unique advantages and great potential in anti-liver fibrosis. This article summarizes the work done over the previous decade, on the active ingredients in natural products that are reported to have anti-hepatic fibrosis effects. The effective anti-hepatic fibrosis ingredients identified can be generally divided into flavonoids, saponins, polysaccharides and alkaloids. Mechanisms of anti-liver fibrosis include inhibition of liver inflammation, anti-lipid peroxidation injury, inhibition of the activation and proliferation of hepatic stellate cells (HSCs), modulation of the synthesis and secretion of pro-fibrosis factors, and regulation of the synthesis and degradation of the extracellular matrix (ECM). This review provides suggestions for the development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Liang Shan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhenni Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Leilei Ci
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen Shuai
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Sun X, Huang X, Zhu X, Liu L, Mo S, Wang H, Wei X, Lu S, Bai F, Wang D, Lin X, Lin J. HBOA ameliorates CCl 4-incuded liver fibrosis through inhibiting TGF-β1/Smads, NF-κB and ERK signaling pathways. Biomed Pharmacother 2019; 115:108901. [PMID: 31079002 DOI: 10.1016/j.biopha.2019.108901] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 01/28/2023] Open
Abstract
An ingredient was isolated from Acanthus ilicifolius and identified as 4-hydroxy-2(3H)-benzoxazolone (HBOA). Its protective effects and underlying mechanism on liver fibrosis were investigated. Briefly, rats were intragastrically administrated with 50% CCl4 twice a week for 12 weeks to induce liver fibrosis. Meanwhile, the animals were treated with various medicines from weeks 8 to 12. Then the histological change, serum biochemical index, inflammatory factors and hepatocyte apoptosis were detected. Moreover, the TGF-β1/Smads, NF-κB and ERK signaling pathways were also detected to illustrate the underlying mechanism. The results showed that HBOA significantly ameliorated CCl4-induced liver injury and collagen accumulation in rats, as evidenced by the histopathologic improvement. Moreover, HBOA markedly decreased hepatocyte apoptosis by regulating the expression levels of caspase-3, -9 and -12, as well as the Bcl-2 family. The mechanism study showed that HBOA significantly decreased the expressions of α-smooth muscle actin (α-SMA) and collagen and inhibited the generation of excessive extracellular matrix (ECM) components by restoring the balance between matrix metalloproteinases (MMPs) and its inhibitor (TIMPs). HBOA markedly alleviated oxidative stress and inflammatory cytokines through inhibiting the NF-κB pathway. In addition, HBOA significantly down-regulated the levels of TGF-β1, Smad2/3, Smad4 and up-regulated the level of Smad7, inhibiting the TGF-β1/Smads signaling pathway. Moreover, HBOA significantly blocked the ERK signaling pathway, leading to the inactivation of hepatic stellate cells. This study suggests that HBOA exerts a protective effect against liver fibrosis via modulating the TGF-β1/Smads, NF-κB and ERK signaling pathways, which will be developed as a potential agent for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xuemei Sun
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Xiukun Huang
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Xunshuai Zhu
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Lin Liu
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Siyan Mo
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Hongyuan Wang
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Xiugui Wei
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Shunyu Lu
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Facheng Bai
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Dandan Wang
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China
| | - Xing Lin
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China.
| | - Jun Lin
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
12
|
Ding YF, Peng ZX, Ding L, Peng YR. Baishouwu Extract Suppresses the Development of Hepatocellular Carcinoma via TLR4/MyD88/NF-κB Pathway. Front Pharmacol 2019; 10:389. [PMID: 31068809 PMCID: PMC6491767 DOI: 10.3389/fphar.2019.00389] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: The root of Cynanchum auriculatum Royle ex Wight, known as Baishouwu, has been widely used for a tonic supplement since ancient times. The current study was performed to explore the effect of Baishouwu extract on the development of experimental hepatocellular carcinoma (HCC) and the potential mechanism involved. Methods: Rats were injected diethylnitrosamine (DEN) to initiate the multistep hepatocarcinogenesis. Animals were treated concurrently with Baishouwu extract given daily by oral gavage for 20 weeks to evaluate its protective effects. Time series sera and organ samples from each group were collected to evaluate the effect of Baishouwu extract on hepatic carcinogenesis. Results: It was found that Baishouwu extract pretreatment successfully attenuated liver injury induced by DEN, as shown by decreased levels of serum biochemical indicators (AST, ALT, ALP, TP, and T-BIL). Administration of Baishouwu extract inhibited the fibrosis-related index in serum and live tissue, respectively from inflammation stage to HCC stage after DEN treatment. It significantly reduced the incidence and multiplicity of DEN-induced HCC development in a dose-dependent manner. Macroscopic and microscopic features suggested that pretreatment with Baishouwu extract for 20 weeks was effective in inhibiting DEN-induced inflammation, liver fibrosis, and HCC. Furthermore, TLR4 overexpression induced by DEN was decreased by Baishouwu extract, leading to the markedly down-regulated levels of MyD88, TRAF6, NF-κB p65, TGF-β1 and α-SMA in hepatitis, cirrhosis, and hepatocarcinoma. Conclusion: In conclusion, Baishouwu extract exhibited potent effect on the development of HCC by altering TLR4/MyD88/ NF-κB signaling pathway in the sequence of hepatic inflammation-fibrosis-cancer, which provided novel insights into the mechanism of Baishouwu extract as a candidate for the pretreatment of HCC in the future.
Collapse
Affiliation(s)
- Yong-Fang Ding
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zi-Xuan Peng
- Third College of Clinical Medicine, Xinjiang Medical University, Ürümqi, China
| | - Lan Ding
- Department of Nephrology, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Yun-Ru Peng
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|