1
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Life (Basel) 2021; 11:life11090957. [PMID: 34575106 PMCID: PMC8467178 DOI: 10.3390/life11090957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.
Collapse
|
4
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
5
|
Sager RA, Dushukyan N, Woodford M, Mollapour M. Structure and function of the co-chaperone protein phosphatase 5 in cancer. Cell Stress Chaperones 2020; 25:383-394. [PMID: 32239474 PMCID: PMC7193036 DOI: 10.1007/s12192-020-01091-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 5 (PP5) is a serine/threonine protein phosphatase that regulates many cellular functions including steroid hormone signaling, stress response, proliferation, apoptosis, and DNA repair. PP5 is also a co-chaperone of the heat shock protein 90 molecular chaperone machinery that assists in regulation of cellular signaling pathways essential for cell survival and growth. PP5 plays a significant role in survival and propagation of multiple cancers, which makes it a promising target for cancer therapy. Though there are several naturally occurring PP5 inhibitors, none is specific for PP5. Here, we review the roles of PP5 in cancer progression and survival and discuss the unique features of the PP5 structure that differentiate it from other phosphoprotein phosphatase (PPP) family members and make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Zhu X, Sun L, He Y, Wei H, Hong M, Liu F, Liu Q, Cao Y, Cui L. Plasmodium berghei serine/threonine protein phosphatase PP5 plays a critical role in male gamete fertility. Int J Parasitol 2019; 49:685-695. [DOI: 10.1016/j.ijpara.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
7
|
D'Arcy BM, Swingle MR, Papke CM, Abney KA, Bouska ES, Prakash A, Honkanen RE. The Antitumor Drug LB-100 Is a Catalytic Inhibitor of Protein Phosphatase 2A (PPP2CA) and 5 (PPP5C) Coordinating with the Active-Site Catalytic Metals in PPP5C. Mol Cancer Ther 2019; 18:556-566. [PMID: 30679389 DOI: 10.1158/1535-7163.mct-17-1143] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 01/11/2019] [Indexed: 12/28/2022]
Abstract
LB-100 is an experimental cancer therapeutic with cytotoxic activity against cancer cells in culture and antitumor activity in animals. The first phase I trial (NCT01837667) evaluating LB-100 recently concluded that safety and efficacy parameters are favorable for further clinical testing. Although LB-100 is widely reported as a specific inhibitor of serine/threonine phosphatase 2A (PP2AC/PPP2CA:PPP2CB), we could find no experimental evidence in the published literature demonstrating the specific engagement of LB-100 with PP2A in vitro, in cultured cells, or in animals. Rather, the premise for LB-100 targeting PP2AC is derived from studies that measure phosphate released from a phosphopeptide (K-R-pT-I-R-R) or inferred from the ability of LB-100 to mimic activity previously reported to result from the inhibition of PP2AC by other means. PP2AC and PPP5C share a common catalytic mechanism. Here, we demonstrate that the phosphopeptide used to ascribe LB-100 specificity for PP2A is also a substrate for PPP5C. Inhibition assays using purified enzymes demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C. The structure of PPP5C cocrystallized with LB-100 was solved to a resolution of 1.65Å, revealing that the 7-oxabicyclo[2.2.1]heptane-2,3-dicarbonyl moiety coordinates with the metal ions and key residues that are conserved in both PP2AC and PPP5C. Cell-based studies revealed some known actions of LB-100 are mimicked by the genetic disruption of PPP5C These data demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C and suggest that the observed antitumor activity might be due to an additive effect achieved by suppressing both PP2A and PPP5C.
Collapse
Affiliation(s)
- Brandon M D'Arcy
- USA Mitchell Cancer Institute, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Kevin A Abney
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Erin S Bouska
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Aishwarya Prakash
- USA Mitchell Cancer Institute, Mobile, Alabama. .,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Richard E Honkanen
- USA Mitchell Cancer Institute, Mobile, Alabama. .,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
8
|
Lv JM, Chen L, Gao Y, Huang H, Pan XW, Liu X, Chen M, Qu FJ, Li L, Wang JK, Cui XG, Xu DF. PPP5C promotes cell proliferation and survival in human prostate cancer by regulating of the JNK and ERK1/2 phosphorylation. Onco Targets Ther 2018; 11:5797-5809. [PMID: 30254472 PMCID: PMC6140725 DOI: 10.2147/ott.s161280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most common malignancies and a major leading cause of cancer-related deaths in males. And it is necessary to explore new molecular targets to enhance diagnosis and treatment level of the PCa. Serine/threonine protein phosphatase 5 (PPP5C) is a vital molecule that Involve in complex cell physiological activity. Purpose The objective of this study was to detecte the expression level of PPP5C in the tissue of prostate cancer patients and further discussed the PPP5C biological function and mechanisms on the PCa. Methods The expression level of PPP5C was analyzed by immunohistochemistry and ONCOM-INE datasets. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to silence the expression of PPP5C in prostate cancer cell. Cell viability and proliferation were measured using MTT and colony formation, and the cell cycle and apoptosis was analyszed by flow cytometry. The changes of downstream protein level and protein phosphorylation level were detected by western blot. Results PPP5C was highly expressed in PCa tissue as analyzed by immunohistochemistry and ONCOMINE datasets. PPP5C Knockdown inhibited cell proliferation and colony formation in PCa cells. Flow cytometry analysis showed that DU145, PC3 and 22RV1 PCa cells deprived of PPP5C were arrested in G0/G1 phase and became apoptotic. Western blot analysis indicated that PPP5C knockdown could promote JNK and ERK phosphorylation. Conclusion Our study indicated that the PPP5C may become a new potential diagnostic biomarker and therapeutic target for the PCa.
Collapse
Affiliation(s)
- Jian-Min Lv
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China, .,Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Lu Chen
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Yi Gao
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Hai Huang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China, .,Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Xiu-Wu Pan
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Xi Liu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Ming Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fa-Jun Qu
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Lin Li
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Jun-Kai Wang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China, .,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University, Shanghai 200135, China,
| | - Dan-Feng Xu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| |
Collapse
|
9
|
Dushukyan N, Dunn DM, Sager RA, Woodford MR, Loiselle DR, Daneshvar M, Baker-Williams AJ, Chisholm JD, Truman AW, Vaughan CK, Haystead TA, Bratslavsky G, Bourboulia D, Mollapour M. Phosphorylation and Ubiquitination Regulate Protein Phosphatase 5 Activity and Its Prosurvival Role in Kidney Cancer. Cell Rep 2018; 21:1883-1895. [PMID: 29141220 DOI: 10.1016/j.celrep.2017.10.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
The serine/threonine protein phosphatase 5 (PP5) regulates multiple cellular signaling networks. A number of cellular factors, including heat shock protein 90 (Hsp90), promote the activation of PP5. However, it is unclear whether post-translational modifications also influence PP5 phosphatase activity. Here, we show an "on/off switch" mechanism for PP5 regulation. The casein kinase 1δ (CK1δ) phosphorylates T362 in the catalytic domain of PP5, which activates and enhances phosphatase activity independent of Hsp90. Overexpression of the phosphomimetic T362E-PP5 mutant hyper-dephosphorylates substrates such as the co-chaperone Cdc37 and glucocorticoid receptor in cells. Our proteomic approach revealed that the tumor suppressor von Hippel-Lindau protein (VHL) interacts with and ubiquitinates K185/K199-PP5 for proteasomal degradation in a hypoxia- and prolyl-hydroxylation-independent manner. Finally, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines and patient tumors exhibit elevated PP5 levels. Downregulation of PP5 causes ccRCC cells to undergo apoptosis, suggesting a prosurvival role for PP5 in kidney cancer.
Collapse
Affiliation(s)
- Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Daneshvar
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Cara K Vaughan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Biological Sciences, Malet Street, London WC1E 7HX, UK
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
10
|
Chen YL, Hung MH, Chu PY, Chao TI, Tsai MH, Chen LJ, Hsiao YJ, Shih CT, Hsieh FS, Chen KF. Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase. Biochem Pharmacol 2017; 138:49-60. [DOI: 10.1016/j.bcp.2017.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/12/2017] [Indexed: 11/27/2022]
|
11
|
Hong TJ, Park K, Choi EW, Hahn JS. Ro 90-7501 inhibits PP5 through a novel, TPR-dependent mechanism. Biochem Biophys Res Commun 2017; 482:215-220. [DOI: 10.1016/j.bbrc.2016.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
|