1
|
Ramachandran H, Anis SNS, Ansari NF, Sevakumaran V, Arifshah N, Rufadzil NAMK, Annuar MSM, Al-Ashraf Abdullah A. Superlative short chain length and medium chain length polyhydroxyalkanoates microbial producers isolated from Malaysian environment. Arch Microbiol 2025; 207:72. [PMID: 40014079 DOI: 10.1007/s00203-025-04256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Plastic waste pollution is escalating globally at an unprecedented pace, with a significant measure of this waste remaining unrecycled. Hence, polyhydroxyalkanoates (PHAs), a biogenic polyester, as a potential alternative to synthetic plastics has been intensively studied over the years. PHAs are biodegradable and biocompatible polyester produced by various microorganisms through the bioprocessing of sustainable sources. Bacterial PHAs show potential as an eco-friendly, biodegradable, and biocompatible alternative to conventional plastics. Malaysian environment, anthropogenic and natural, harbors an enormous diversity of microorganisms as well as various bacteria that produce PHAs. Hence, the current submission highlights on four indigenous PHA producers, isolated from the local environments, namely Cupriavidus malaysiensis USMAA2-4, Cupriavidus malaysiensis USMAA10-20, Cupriavidus malaysiensis USMAHM13, and Pseudomonas putida BET001. The four strains have contributed significantly as a workhorse in advancing PHA research and innovation in Malaysia and globally. Their uniqueness and significance in the PHA investigation, which include biosynthesis, recovery strategies, metabolic pathways involved, characteristics and properties of extracted PHA, biodegradation, and its potential applications are discussed.
Collapse
Affiliation(s)
- Hema Ramachandran
- School of Biological Sciences, Faculty of Integrated Life Sciences, Quest International University Perak, 30250, Ipoh, Perak, Malaysia
| | - Siti Nor Syairah Anis
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Nor Faezah Ansari
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
| | - Vigneswari Sevakumaran
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nurhanani Arifshah
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Nurul Afifah Mohd Kamal Rufadzil
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Amirul Al-Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| |
Collapse
|
2
|
Hahn T, Alzate MO, Leonhardt S, Tamang P, Zibek S. Current trends in medium-chain-length polyhydroxyalkanoates: Microbial production, purification, and characterization. Eng Life Sci 2024; 24:2300211. [PMID: 38845815 PMCID: PMC11151071 DOI: 10.1002/elsc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) have gained interest recently due to their biodegradability and versatility. In particular, the chemical compositions of medium-chain-length (mcl)-PHAs are highly diverse, comprising different monomers containing 6-14 carbon atoms. This review summarizes different feedstocks and fermentation strategies to enhance mcl-PHA production and briefly discusses the downstream processing. This review also provides comprehensive details on analytical tools for determining the composition and properties of mcl-PHA. Moreover, this study provides novel information by statistically analyzing the data collected from several reports on mcl-PHA to determine the optimal fermentation parameters (specific growth rate, PHA productivity, and PHA yield from various structurally related and unrelated substrates), mcl-PHA composition, molecular weight (MW), and thermal and mechanical properties, in addition to other relevant statistical values. The analysis revealed that the median PHA productivity observed in the fed-batch feeding strategy was 0.4 g L-1 h-1, which is eight times higher than that obtained from batch feeding (0.05 g L-1 h-1). Furthermore, 3-hydroxyoctanoate and -decanoate were the primary monomers incorporated into mcl-PHA. The investigation also determined the median glass transition temperature (-43°C) and melting temperature (47°C), which indicated that mcl-PHA is a flexible amorphous polymer at room temperature with a median MW of 104 kDa. However, information on the monomer composition or heterogeneity and the associated physical and mechanical data of mcl-PHAs is inadequate. Based on their mechanical values, the mcl-PHAs can be classified as semi-crystalline polymers (median crystallinity 23%) with rubber-like properties and a median elongation at break of 385%. However, due to the limited mechanical data available for mcl-PHAs with known monomer composition, identifying suitable processing tools and applications to develop mcl-PHAs further is challenging.
Collapse
Affiliation(s)
- Thomas Hahn
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Melissa Ortega Alzate
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Department of Chemical EngineeringUniversity of AntioquiaEl Carmen de ViboralColombia
| | - Steven Leonhardt
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Pravesh Tamang
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Susanne Zibek
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Institute of Interfacial Engineering and Plasma Technology IGVPUniversity of StuttgartStuttgartGermany
| |
Collapse
|
3
|
Ishak KA, Zahid NI, Velayutham TS, Khyasudeen MF, Annuar MSM. Corroborative studies on chain packing characteristics of biological medium-chain-length poly-3-hydroxyalkanoates with different monomeric composition. Int J Biol Macromol 2024; 269:131973. [PMID: 38692536 DOI: 10.1016/j.ijbiomac.2024.131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Medium-chain-length poly-3-hydroxyalkanoates (mcl-PHAs) with varied monomeric compositions were biosynthesized by producer bacteria fed with different fatty acids as carbon source. Octanoic-, lauric-, stearic-, and oleic acids were used to produce four types of mcl-PHAs viz. PHA-OC, PHA-LA, PHA-ST, and PHA-OL, respectively. The mcl-PHAs as film-casted preparations exhibit distinct traits e.g., PHA-OC and PHA-ST films are less flexible than PHA-LA while PHA-OL is a sticky, glue-like material; PHA-ST is opaque whereas PHA-OC, PHA-LA, and PHA-OL displayed transparent layers. The observation is attributed to polymer chain packing and side chain crystallization. A structure-property investigation of these biopolymers was carried out employing different spectroscopic and microscopic analyses in addition to thermal analyses. Comparative analyses of the results were applied in the interpretation and discussion of structure-property relationship.
Collapse
Affiliation(s)
- Khairul Anwar Ishak
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Thamil Selvi Velayutham
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - M Faisal Khyasudeen
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
4
|
Ishak KA, Safian NAM, Kamal SAA, Velayutham TS, Annuar MSM. Free-radical copolymerization of biological medium-chain-length poly-3-hydroxyalkanoate with poly-methyl acrylate under ultrasonication. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JCW. Development of polyhydroxyalkanoates production from waste feedstocks and applications. J Biosci Bioeng 2018; 126:282-292. [DOI: 10.1016/j.jbiosc.2018.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
|
6
|
Ansari NF, Annuar MSM, Murphy BP. A porous medium-chain-length poly(3-hydroxyalkanoates)/hydroxyapatite composite as scaffold for bone tissue engineering. Eng Life Sci 2016; 17:420-429. [PMID: 32624787 DOI: 10.1002/elsc.201600084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 11/09/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are hydrophobic biopolymers with huge potential for biomedical applications due to their biocompatibility, excellent mechanical properties and biodegradability. A porous composite scaffold made of medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) and hydroxyapatite (HA) was fabricated using particulate leaching technique and NaCl as a porogen. Different percentages of HA loading was investigated that would support the growth of osteoblast cells. Ultrasonic irradiation was applied to facilitate the dispersion of HA particles into the mcl-PHA matrix. The different P(3HO-co-3HHX)/HA composites were investigated using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA). The scaffolds were found to be highly porous with interconnecting pore structures and the HA particles were homogeneously dispersed in the polymer matrix. The scaffolds biocompatibility and osteoconductivity were also assessed following the proliferation and differentiation of osteoblast cells on the scaffolds. From the results, it is clear that scaffolds made from P(3HO-co-3HHX)/HA composites are viable candidate materials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nor Faezah Ansari
- Institute of Biological Sciences Faculty of Science University of Malaya Kuala Lumpur Malaysia.,Department of Biotechnology Kuliyyah of Sciences International Islamic University of Malaysia Kuantan Pahang Malaysia
| | - M Suffian M Annuar
- Institute of Biological Sciences Faculty of Science University of Malaya Kuala Lumpur Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR) University of Malaya Kuala Lumpur Malaysia
| | - Belinda Pingguan Murphy
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|