1
|
Liu Y, Zhao M, Liu X, Feng S, Zhu Q, Li S, Zhang X. N-Doping CQDs as an Efficient Fluorescence Probe Based on Dynamic Quenching for Determination of Copper Ions and Alcohol Sensing in Baijiu. J Fluoresc 2025; 35:3239-3251. [PMID: 38743378 DOI: 10.1007/s10895-024-03749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
To address an accurate detection of heavy metal ions in Baijiu production, a nitrogen-doping carbon quantum dots (N-CQDs) was prepared by hydrothermal method from citric acid and urea. The as-prepared N-CQDs had an average particle size of 2.74 nm, and a large number of functional groups (amino, carbonyl group, etc.) attached on its surface, which obtained a 9.6% of quantum yield (QY) with relatively high and stable fluorescence performance. As a fluorescent sensor, the fluorescence of N-CQDs at 380 nm excitation wavelength could be quenched quantitatively by adding Cu2+, due to the dynamic quenching of electron transfer caused by the binding of amine groups and Cu2+, which showed excellent sensitivity and selectivity to Cu2+ in the range of 0.5-5 μM with a detection limit (LOD) of 0.032 μM. In addition, the N-CQDs as well as could be applied to quantitative determine alcohol content in the range of 10-80 V/V% depending on the fluorescence enhancement. Upon the experiment, the fluorescent mechanism was studied by Molecular dynamics (MD) simulations, which demonstrated that solvent effect played an influential role on sensing alcohol content in Baijiu. Overall, the work provided a theoretically guide for the design of fluorescence sensors to monitor heavy metal ion in liquid drinks and sense alcohol content.
Collapse
Affiliation(s)
- Ying Liu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Mengjie Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuqi Liu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shang Feng
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiufeng Zhu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing, 100048, China.
- China Food Flavor and Nutrition Health Innovation Center, Beijing, 100048, China.
| | - Shuangyang Li
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing, 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing, 100048, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Chen H, Tian P, Guo J, Sun M, Zhu W, Li Z, Liu Z. Synergistic synthesis of gold nanoflowers as upconversion near-infrared nanoprobe energy acceptor and recognition unit for improved hydrogen sulfide sensing. Talanta 2024; 273:125908. [PMID: 38503119 DOI: 10.1016/j.talanta.2024.125908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
A highly sensitive and selective upconversion near-infrared (NIR) fluorescence and colorimetric dual readout hydrogen sulfide (H2S) nanoprobe was constructed based on the excellent NIR fluorescence emission performance of upconversion nanomaterials (UCNPs), the specific recognition effect of synergistically synthesized gold nanoflowers (trypsin-stabled AuNFs (Try-AuNFs)) and the effective NIR fluorescence quenching capability. In this assay, the sensing strategy included three processes. First of all, the synthesized UCNPs can emit 803 nm NIR fluorescence when they were excited by 980 nm excitation light. Secondly, as a result of the principle of fluorescence resonance energy transfer (FRET), Try-AuNFs can effectively quench the NIR fluorescence of UCNPs at 803 nm, which can effectively improve the signal-to-background ratio of nanoprobes, thereby improving the sensitivity of the probes. Thirdly, in the presence of H2S, the Try protective layer on the surface of Try-AuNFs was specifically penetrated, which will subsequently cleave Try-AuNFs via the strong S-Au bond. As such, the NIR fluorescence of UCNPs will be restored, achieving high selectivity and sensitivity detection of H2S. Under optimized conditions, the linear response range of H2S was 0.1-300 μM, and the detection limit was 53 nM. It is worth noting that the Try on the surface of Try-AuNFs via the synergistic effect can increase the steric hindrance of the probe, and this can effectively prevent the interaction between the probe with biothiols (cysteine (Cys), homocysteine (Hcy)) and other natural amino acids (non-thiol-containing) with resultant in the high selectivity regarding the detection of H2S in human serum, which is unlikely to be achieved by AuNFs synthesized by the gold seed method (Se-AuNFs). This work not only provided a new type of UCNPs fluorescence quencher and recognition unit, but also exemplified that the use of the physical properties (steric hindrance) of protein ligands on the surface of nanoflowers can improve the specificity of the probe. This will provide new ideas for the design of other nanoprobes.
Collapse
Affiliation(s)
- Hongyu Chen
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Peipei Tian
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiayi Guo
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Manman Sun
- College of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China.
| | - Wenping Zhu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhendong Li
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Zengchen Liu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
3
|
Zulfajri M, Gedda G, Ulla H, Habibati, Gollavelli G, Huang GG. A review on the chemical and biological sensing applications of silver/carbon dots nanocomposites with their interaction mechanisms. Adv Colloid Interface Sci 2024; 325:103115. [PMID: 38422725 DOI: 10.1016/j.cis.2024.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The development of new nanocomposites has a significant impact on modern instrumentation and analytical methods for chemical analysis. Due to their unique properties, carbon dots (CDs) and silver nanoparticles (AgNPs), distinguished by their unique physical, electrochemical, and optical properties, have captivated significant attention. Thus, combining AgNPs and CDs may produce Ag/CDs nanocomposites with improved performances than the individual material. This comprehensive review offers an in-depth exploration of the synthesis, formation mechanism, properties, and the recent surge in chemical and biological sensing applications of Ag/CDs with their sensing mechanisms. Detailed insights into synthesis methods to produce Ag/CDs are unveiled, followed by information on their physicochemical and optical properties. The crux of this review lies in its spotlight on the diverse landscape of chemical and biological sensing applications of Ag/CDs, with a particular focus on fluorescence, electrochemical, colorimetric, surface-enhanced Raman spectroscopy, and surface plasmon resonance sensing techniques. The elucidation of sensing mechanisms of the nanocomposites with various target analytes adds depth to the discussion. Finally, this review culminates with a concise summary and a glimpse into future perspectives of Ag/CDs aiming to achieve highly efficient and enduring Ag/CDs for various applications.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh 23245, Indonesia
| | - Gangaraju Gedda
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India.; Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| | - Hidayath Ulla
- Department of Physics, School of Engineering, Presidency University, Bangalore 560064, India; Innovation and Translational Research Hub (iTRH), Presidency University, Bangalore 560064, Karnataka, India
| | - Habibati
- Department of Chemistry Education, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| | - Ganesh Gollavelli
- Department of Humanities and Basic Science, Aditya Engineering College, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, India
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Wei N, Liang ZY, Fang WL, Guo XF, Wang H, Zhang HX. Facile synthesis of non-modified yellow emission silicon quantum dots and their visualization of hydrogen sulfide in living cells and onion tissues. J Colloid Interface Sci 2023; 642:145-153. [PMID: 37001453 DOI: 10.1016/j.jcis.2023.03.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Yellow fluorescent silicon quantum dots (y-SiQDs) with 22.2% fluorescence quantum yield were synthesized by a simple hydrothermal method using 3-glycidoxypropyl triethoxysilane (GOTS) and m-aminophenol. The excitation wavelength is 550 nm with an emission wavelength of 574 nm, which effectively avoids the interference of biological autofluorescence. Notably, the synthesis approach does not require any post-modification and the y-SiQDs can be directly used for hydrogen sulfide (H2S) quantification due to static quenching. It exhibits high sensitivity and excellent selectivity for H2S with a 0.2-10 μM (R2 = 0.9953) linear range and detection limit of 54 nM. y-SiQDs have excellent stability and biocompatibility and can be used for H2S imaging in living cells and onion tissues.
Collapse
|
5
|
Wu CB, Hao JY, Liu LJ, Zeng XH. Synthesis and interpolymer complexation of a novel polycation with 2-hydroxyl-3-ethoxyprop-1-yl groups, high density of charge and excellent proton buffering capability. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Hu X, Zhang Q, Dai X, Sun J, Gao F. Dual-Emission Carbonized Polymer Dots for Ratiometric pH Sensing, pH-Dependent Generation of Singlet Oxygen, and Imaging-Guided Dynamics Monitoring of Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:7663-7672. [PMID: 35006696 DOI: 10.1021/acsabm.1c00892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pH environment in cancer cells has been demonstrated to display vital influences on the therapeutic effect of photodynamic therapy (PDT). It is very interesting to develop pH-responsive probes for simultaneous pH sensing and dynamics monitoring of the effects of PDT, and therefore assessing the correlation between them. In this study, a multifunctional fluorescence probe, dual-emission carbonized polymer dot (CPD) in blue and red regions, which uses ethylene imine polymer (PEI) and 4,4',4″,4‴-(porphine-5, 10, 15, 20-tetrayl) tetrakis (benzoic acid) (TCPP) as precursors through a one-step hydrothermal amide reaction, has been designed for ratiometric pH sensing, generating pH-dependent 1O2 for PDT of cancer cells, and investigating the dynamics effects of PDT through pH-guided imaging. The prepared CPDs were successfully used for ratiometric pH response, pH-dependent generation of 1O2, and dynamics monitoring PDT in HeLa cells. This study may provide an alternative strategy to prepare CPD-based theranostic integrated nanoprobes for PDT through the rational design of precursors.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
7
|
An Overview of the Recent Developments in Carbon Quantum Dots—Promising Nanomaterials for Metal Ion Detection and (Bio)Molecule Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fluorescent carbon quantum dots (CQDs) represent an emerging subset of carbonaceous nanomaterials, recently becoming a powerful tool for biosensing, bioimaging, and drug and gene delivery. In general, carbon dots are defined as zero-dimensional (0D), spherical-like nanoparticles with <10 nm in size. Their unique chemical, optical, and electronic properties make CQDs versatile materials for a wide spectrum of applications, mainly for the sensing and biomedical purposes. Due to their good biocompatibility, water solubility, and relatively facile modification, these novel materials have attracted tremendous interest in recent years, which is especially important for nanotechnology and nanoscience expertise. The preparation of the biomass-derived CQDs has attracted growing interest recently due to their low-cost, renewable, and green biomass resources, presenting also the variability of possible modification for the enhancement of CQDs’ properties. This review is primarily focused on the recent developments in carbon dots and their application in the sensing of different chemical species within the last five years. Furthermore, special emphasis has been made regarding the green approaches for obtaining CQDs and nanomaterial characterization toward better understanding the mechanisms of photoluminescent behavior and sensing performance. In addition, some of the challenges and future outlooks in CQDs research have been briefly outlined.
Collapse
|
8
|
Pawar S, Duadi H, Fleger Y, Fixler D. Carbon Dots-Based Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:232. [PMID: 33477327 PMCID: PMC7830989 DOI: 10.3390/nano11010232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Carbon dots (CDs)-based logic gates are smart nanoprobes that can respond to various analytes such as metal cations, anions, amino acids, pesticides, antioxidants, etc. Most of these logic gates are based on fluorescence techniques because they are inexpensive, give an instant response, and highly sensitive. Computations based on molecular logic can lead to advancement in modern science. This review focuses on different logic functions based on the sensing abilities of CDs and their synthesis. We also discuss the sensing mechanism of these logic gates and bring different types of possible logic operations. This review envisions that CDs-based logic gates have a promising future in computing nanodevices. In addition, we cover the advancement in CDs-based logic gates with the focus of understanding the fundamentals of how CDs have the potential for performing various logic functions depending upon their different categories.
Collapse
Affiliation(s)
- Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| | - Yafit Fleger
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| |
Collapse
|
9
|
Li J, Wang X, Shen M, Shi X. Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS APPLIED BIO MATERIALS 2020; 3:3935-3955. [PMID: 35025470 DOI: 10.1021/acsabm.0c00536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detection of analytes in biological systems is pivotal to explore their physiological roles and provide diagnostic and treatment options for related diseases, which however remains a great challenge. Optical nanoprobes that exhibit absorption or fluorescence signal changes in response to the targets of interest have emerged as a versatile class of biosensors in the field. Polyethylenimine (PEI) with abundant amine groups plays indispensable roles in the construction of optical nanoprobes and mediating the sensing processes. After interaction with analytes, PEI-based optical nanoprobes can be induced to form aggregates, be disassembled or separated into individual units, or undergo structure/component alterations. As such, the optical properties of these nanoprobes have corresponding changes, allowing for sensitive and selective detection of a wide variety of analytes in biological environment. Up to now, detections of reactive oxygen species, pH, metal ions, biothiols, neurotransmitters, therapeutic agents, oxygen levels, enzyme activities, and virus/bacteria have been successfully demonstrated using PEI-based optical nanoprobes. Herein, we summarize the recent developments of PEI-based optical nanoprobes for biosensing applications and highlight the probe designs and sensing mechanisms. The existing challenges and prospects regarding biosensing applications of PEI-based optical nanoprobes are also briefly discussed.
Collapse
Affiliation(s)
- Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai 200237, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
10
|
Pan M, Xie X, Liu K, Yang J, Hong L, Wang S. Fluorescent Carbon Quantum Dots-Synthesis,Functionalization and Sensing Application in FoodAnalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E930. [PMID: 32403325 PMCID: PMC7279393 DOI: 10.3390/nano10050930] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Carbon quantum dots (CQDs) with stable physicochemical properties are one of theemerging carbon nanomaterials that have been studied in recent years. In addition to the excellentoptical properties such as photoluminescence, photobleaching resistance and light stability, thismaterial also has favorable advantages of good biocompatibility and easy functionalization, whichmake it an ideal raw material for constructing sensing equipment. In addition, CQDs can combinedwith other kinds of materials to form the nanostructured composites with unique properties, whichprovides new insights and ideas for the research of many fields. In the field of food analysis,emerging CQDs have been deeply studied in food composition analysis, detection and monitoringtrace harmful substances and made remarkable research progress. This article introduces andcompares the various methods for CQDs preparation and reviews its related sensing applicationsas a new material in food components analysis and food safety inspection in recent years. It isexpected to provide a significant guidance for the further study of CQDs in the field of foodanalysis and detection. CQDs; synthesis; fluorescent sensing; food analysis.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
11
|
ISSUE HIGHLIGHTS. Biotechnol Appl Biochem 2019. [DOI: 10.1002/bab.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|