1
|
Zhang YQ, Han JL, Cheng HY, Wang HC, Liu TJ, Liang B, Wang AJ. Hypersaline organic wastewater treatment: Biotechnological advances and engineering challenges. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 24:100542. [PMID: 40083747 PMCID: PMC11905840 DOI: 10.1016/j.ese.2025.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/16/2025]
Abstract
The sustainable treatment of hypersaline organic wastewater (HSOW) remains a significant challenge in industrial wastewater management, as conventional approaches often fail to meet stringent discharge standards and low-carbon sustainability targets. Halotolerant and halophilic microbial strains offer promising solutions, yet their application is hindered by limited stress resistance, thus hindering effective treatment and achieving near-zero liquid discharge. In this review, we systematically examine endogenous strategies, such as microbial mutualism and genetic engineering, alongside exogenous approaches, including functional materials, electrical and magnetic stimulation, and 3D bioprinting, to improve microbial resilience in hypersaline environments. Furthermore, we propose an integrated treatment framework that combines physicochemical and biochemical processes, leveraging biological detoxification and biological desalination to enhance the treatment of HSOW while minimizing environmental impact and carbon emissions. By advancing the understanding of microbial stress adaptation and optimization strategies, this review provides critical insights into the development of sustainable, low-carbon wastewater treatment solutions.
Collapse
Affiliation(s)
- Yan-Qing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Tie-Jun Liu
- Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Byrne E, Björkmalm J, Bostick JP, Sreenivas K, Willquist K, van Niel EWJ. Characterization and adaptation of Caldicellulosiruptor strains to higher sugar concentrations, targeting enhanced hydrogen production from lignocellulosic hydrolysates. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:210. [PMID: 34717729 PMCID: PMC8557575 DOI: 10.1186/s13068-021-02058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The members of the genus Caldicellulosiruptor have the potential for future integration into a biorefinery system due to their capacity to generate hydrogen close to the theoretical limit of 4 mol H2/mol hexose, use a wide range of sugars and can grow on numerous lignocellulose hydrolysates. However, members of this genus are unable to survive in high sugar concentrations, limiting their ability to grow on more concentrated hydrolysates, thus impeding their industrial applicability. In this study five members of this genus, C. owensensis, C. kronotskyensis, C. bescii, C. acetigenus and C. kristjanssonii, were developed to tolerate higher sugar concentrations through an adaptive laboratory evolution (ALE) process. The developed mixed population C. owensensis CO80 was further studied and accompanied by the development of a kinetic model based on Monod kinetics to quantitatively compare it with the parental strain. RESULTS Mixed populations of Caldicellulosiruptor tolerant to higher glucose concentrations were obtained with C. owensensis adapted to grow up to 80 g/L glucose; other strains in particular C. kristjanssonii demonstrated a greater restriction to adaptation. The C. owensensis CO80 mixed population was further studied and demonstrated the ability to grow in glucose concentrations up to 80 g/L glucose, but with reduced volumetric hydrogen productivities ([Formula: see text]) and incomplete sugar conversion at elevated glucose concentrations. In addition, the carbon yield decreased with elevated concentrations of glucose. The ability of the mixed population C. owensensis CO80 to grow in high glucose concentrations was further described with a kinetic growth model, which revealed that the critical sugar concentration of the cells increased fourfold when cultivated at higher concentrations. When co-cultured with the adapted C. saccharolyticus G5 mixed culture at a hydraulic retention time (HRT) of 20 h, C. owensensis constituted only 0.09-1.58% of the population in suspension. CONCLUSIONS The adaptation of members of the Caldicellulosiruptor genus to higher sugar concentrations established that the ability to develop improved strains via ALE is species dependent, with C. owensensis adapted to grow on 80 g/L, whereas C. kristjanssonii could only be adapted to 30 g/L glucose. Although C. owensensis CO80 was adapted to a higher sugar concentration, this mixed population demonstrated reduced [Formula: see text] with elevated glucose concentrations. This would indicate that while ALE permits adaptation to elevated sugar concentrations, this approach does not result in improved fermentation performances at these higher sugar concentrations. Moreover, the observation that planktonic mixed culture of CO80 was outcompeted by an adapted C. saccharolyticus, when co-cultivated in continuous mode, indicates that the robustness of CO80 mixed culture should be improved for industrial application.
Collapse
Affiliation(s)
- Eoin Byrne
- Division of Applied Microbiology, Lund University, PO Box 124, 221 00, Lund, Sweden
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Johanna Björkmalm
- Division of Applied Microbiology, Lund University, PO Box 124, 221 00, Lund, Sweden
- RISE, Ideon Science Park, Building Beta 2 3v Scheelevägen 17, 22370, Lund, Sweden
| | - James P Bostick
- Division of Applied Microbiology, Lund University, PO Box 124, 221 00, Lund, Sweden
- Coriolis Pharma Research GmbH, Fraunhoferstrasse 18B, 82152, Planegg, Germany
| | - Krishnan Sreenivas
- Division of Applied Microbiology, Lund University, PO Box 124, 221 00, Lund, Sweden
| | - Karin Willquist
- RISE, Ideon Science Park, Building Beta 2 3v Scheelevägen 17, 22370, Lund, Sweden
| | - Ed W J van Niel
- Division of Applied Microbiology, Lund University, PO Box 124, 221 00, Lund, Sweden.
| |
Collapse
|