1
|
Kan X, Zhou Z, Liu L, Aiskikaer R, Zou Y. Significance of non-steroidal anti-inflammatory drugs in the prevention and treatment of cervical cancer. Heliyon 2025; 11:e42055. [PMID: 39916829 PMCID: PMC11800076 DOI: 10.1016/j.heliyon.2025.e42055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Cervical cancer, ranking as the fourth most common cancer in women globally, is closely linked to chronic inflammation resulting from persistent human papillomavirus (HPV) infection. Chronic inflammation mediated by cyclooxygenase (COX) has been identified as a factor in cancer onset and progression, with HPV oncoproteins E6 and E7 inducing COX activation. Nonsteroidal anti-inflammatory drugs (NSAIDs) have demonstrated the capability to significantly inhibit COX activity, playing a crucial preventive and therapeutic role in various tumors. This paper explores the therapeutic value and potential clinical applications of NSAIDs in cervical cancer by examining the mechanistic interactions between HPV and COX and the carcinogenic effects of COX in cervical cancer.
Collapse
Affiliation(s)
- Xun Kan
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenhuan Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lianlian Liu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Reziwanguli Aiskikaer
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yinggang Zou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Ishii S, Ozaki M, Takamura N, Ogata K, Tokunaga J, Ikeda R. Influence of Endogenous Substances on Site-II to Site-I Displacement of Diclofenac Bound to Albumin in the Aqueous Humor of Patients with Cataract. Biol Pharm Bull 2024; 47:213-220. [PMID: 38057117 DOI: 10.1248/bpb.b23-00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Diclofenac instillation is useful in preventing intraoperative miosis and macular edema caused by postoperative inflammation in cataract surgery; however, optimum efficacy is not attained when the instilled diclofenac strongly binds to albumin in patients' aqueous humor. Therefore, a method that inhibits diclofenac binding and increases the concentration of its free fraction is needed. We conducted a basic study regarding the effects of inhibitors on the binding of instilled diclofenac to albumin and endogenous substances in aqueous humor. Aqueous humor samples from 16 patients were pooled together for analysis. The free fraction of diclofenac was measured using ultrafiltration methods in various experiments with pooled and mimic aqueous humor. Free fraction of diclofenac, a site II drug, in pooled aqueous humor was 0.363 ± 0.013. The binding of diclofenac in the presence of phenylbutazone (PB), a site I inhibitor, was significantly inhibited (free fraction = 0.496 ± 0.013); however, no significant inhibition by ibuprofen, a site II inhibitor, (free fraction = 0.379 ± 0.004), was observed. The unexpected result was due to free fatty acids (FFAs; palmitic acid (PA)) and L-tryptophan (Trp). The inhibition of diclofenac binding by PB in the mimic aqueous humor containing these endogenous substances revealed significant binding inhibition in the presence of PA and Trp. Diclofenac is strongly rebound from site II to site I in the presence of FFAs and Trp in the aqueous humor because FFAs and Trp induce a conformational change in albumin. Therefore, PB significantly inhibits the binding of diclofenac to albumin.
Collapse
Affiliation(s)
- Saya Ishii
- Department of Pharmacy, University of Miyazaki Hospital, University of Miyazaki
- Ozaki Eye Hospital
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | | | - Norito Takamura
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | - Kenji Ogata
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | - Jin Tokunaga
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, University of Miyazaki
| |
Collapse
|
3
|
Structural Investigation of Diclofenac Binding to Ovine, Caprine, and Leporine Serum Albumins. Int J Mol Sci 2023; 24:ijms24021534. [PMID: 36675044 PMCID: PMC9864019 DOI: 10.3390/ijms24021534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Free drug concentration in the blood sera is crucial for its appropriate activity. Serum albumin, the universal blood carrier protein, is responsible for transporting drugs and releasing them into the bloodstream. Therefore, a drug's binding to SA is especially important for its bioavailability and it is a key problem in the drug design process. In this paper, we present crystal structures of three animal serum albumin complexes: ovine, caprine, and leporine, with diclofenac, a popular non-steroidal anti-inflammatory drug that is used in therapy of chronic and acute pain. Details of diclofenac binding mode by the presented serum albumins are compared with analogous complexes of human and equine serum albumins. The analysis of the occupied binding pockets in crystal structures of the investigated serum albumins from different mammals shows that they have two common and a number of unique diclofenac binding sites. The most intriguing is the fact that the albumins from the described species are able to bind different numbers of molecules of this popular anti-inflammatory drug, but none of the binding sites overlap with ones in the human serum albumin.
Collapse
|
4
|
Shi Y, Wang Y, Shen Y, Zhu Q, Ding F. Superior Dialytic Removal of Bilirubin and Bile Acids by Free Fatty Acid Displacement and Its Synergy With Albumin-Based Dialysis. ASAIO J 2023; 69:127-135. [PMID: 35412475 DOI: 10.1097/mat.0000000000001720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
One of the cardinal features of any liver replacement therapy is the ability to remove accumulated metabolites. However, an unsolved problem is the low dialyzability of lipophilic toxins. This study aimed to explore whether bilirubin and bile acids removal can be increased by free fatty acid (FFA) displacement and its synergy with albumin dialysis. First, we found that the protein binding of both bilirubin and bile acids decreased significantly with increasing FFA concentrations when co-incubated directly. Then, in vitro dialysis showed that fatty acid mixtures infusion prefilter effectively increased the fractional removals of bilirubin and bile acids, showing higher efficiency compared with albumin-based hemodialysis (HD); in vivo dialysis in liver failure rats showed that lipid emulsion administration resulted in higher reduction ratios and more total solute removals for bilirubin and bile acids after 4 h HD compared with control, which were also superior to albumin-based HD. Finally, the highest dialysis efficacy was always observed by their synergy whether in vitro or in vivo . These findings highlight that FFA displacement-based HD could efficiently improve the dialytic removal of bilirubin and bile acids, which might even be more efficient than albumin-based HD. Their synergy may represent a promising strategy to maximize the removal of circulating bilirubin and bile acids accumulated in liver failure.
Collapse
Affiliation(s)
- Yuanyuan Shi
- From the Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, PR China.,Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
5
|
Wzorek J, Bednarek R, Watala C, Boncler M. Efficacy of a Combined Antiplatelet Therapy Is Not Affected by a Simultaneous Binding of Cangrelor and PSB 0777 to Albumin. Front Pharmacol 2021; 12:638257. [PMID: 33776774 PMCID: PMC7990796 DOI: 10.3389/fphar.2021.638257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
Concurrent administration of two drugs may complicate the management of acute coronary syndromes: competitive drug displacement diminishes drug binding and alters drug pharmacodynamics. We investigated the interaction of two antiplatelet compounds (PSB 0777 and cangrelor) with human serum albumin (HSA) to determine whether they compete with one another for the binding to albumin. Both examined compounds have been earlier claimed to bind to HSA (PSB 0777) or plasma proteins (cangrelor). Fluorescence spectroscopy, surface plasmon resonance spectroscopy and molecular modeling indicated that PSB 0777 and cangrelor interacted with HSA with moderate affinity (KD∼10−5 M). The binding of cangrelor to HSA involved primarily hydrophobic interactions, while the interaction of PSB 0777 with HSA was driven by hydrophobic and electrostatic forces. It was found that PSB 0777 and cangrelor do not share the same binding site on the protein. Our findings highlight the importance of albumin in the transport of PSB 0777 and cangrelor and suggest that the antiplatelet activity of the examined compounds used in combination is not affected by competition-induced changes in drug binding to HSA.
Collapse
Affiliation(s)
- Joanna Wzorek
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Radosław Bednarek
- Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Yamasaki K, Kawai A, Sakurama K, Udo N, Yoshino Y, Saito Y, Tsukigawa K, Nishi K, Otagiri M. Interaction of Benzbromarone with Subdomains IIIA and IB/IIA on Human Serum Albumin as the Primary and Secondary Binding Regions. Mol Pharm 2021; 18:1061-1070. [PMID: 33478218 DOI: 10.1021/acs.molpharmaceut.0c01004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Benzbromarone has been used for the treatment of gout for more than 30 years. Although it shows a high level of binding to plasma proteins (>99%), our knowledge of this binding is not sufficiently extensive to permit us to understand its pharmacokinetics and pharmacodynamics. To address this issue in more detail, we characterized the binding of benzbromarone to human serum albumin (HSA), the most abundant protein in plasma. Equilibrium dialysis and circular dichroism findings indicated that benzbromarone binds strongly to one primary as well as to multiple secondary sites on HSA and that the bromine atoms of benzbromarone play important roles in this high affinity binding. An X-ray crystallographic study revealed that benzbromarone molecules bind to hydrophobic pockets within subdomains IB, IIA, and IIIA. Inhibition experiments using site specific ligands (subdomain IB; fusidic acid, IIA; warfarin, IIIA; diazepam) indicated that the primary and secondary binding sites that benzbromarone binds to are within subdomains IIIA and IB/IIA, respectively. Lastly, a study of the effect of fatty acids on the benzbromarone-HSA interaction suggested that benzbromarone, when displaced from subdomain IIIA by sodium oleate, could transfer to subdomains IB or IIA. Thus, these data will permit more relevant assessments of the displacement interactions of benzbromarone especially in cases of co-administered drugs or endogenous compounds that also bind to subdomain IIIA. In addition, the findings presented herein will also be useful for designing drug combination therapy in which pharmacokinetic and pharmacodynamic performance need to be controlled.
Collapse
Affiliation(s)
- Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.,DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Keiki Sakurama
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Nagiko Udo
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Yuta Yoshino
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Yuki Saito
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.,DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.,DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.,DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| |
Collapse
|
7
|
Iqbal H, Yang T, Li T, Zhang M, Ke H, Ding D, Deng Y, Chen H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release 2020; 329:997-1022. [PMID: 33091526 DOI: 10.1016/j.jconrel.2020.10.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Serum protein as naturally essential biomacromolecules has recently emerged as a versatile carrier for diagnostic and therapeutic drug delivery for cancer nanomedicine with superior biocompatibility, improved pharmacokinetics and enhanced targeting capacity. A variety of serum proteins have been utilized for drug delivery, mainly including albumin, ferritin/apoferritin, transferrin, low-density lipoprotein, high-density lipoprotein and hemoglobin. As evidenced by the success of paclitaxel-bound albumin nanoparticles (AbraxaneTM), serum protein-based nanoparticles have gained attractive attentions for precise biological design and potential clinical application. In this review, we summarize the general design strategies, targeting mechanisms and recent development of serum protein-based nanoparticles in the field of cancer nanomedicine. Moreover, we also concisely specify the current challenges to be addressed for a bright future of serum protein-based nanomedicines.
Collapse
Affiliation(s)
- Haroon Iqbal
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Miya Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Serum albumin: clinical significance of drug binding and development as drug delivery vehicle. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:193-218. [PMID: 33485484 DOI: 10.1016/bs.apcsb.2020.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human serum albumin, the primary transport and reservoir protein in the human circulatory system, interacts with numerous endogenous and exogenous ligands of varying structural characteristics. The mode of binding of drugs to albumin is central to understanding their pharmacokinetic profiles and has a major influence on their in vivo efficacy. Altered drug binding to albumin due to drug-drug interactions or abnormal physiology may result in marked changes in the active drug concentration, thus affecting its pharmacokinetic and pharmacodynamic properties. The propensity of drug-drug interaction to be clinically significant as well as possible exploitation of such interactions for therapeutic purposes is reviewed. Being the major organs of albumin metabolism, any impairment in the liver and kidney functions frequently alter the level of serum albumin, which affects the pharmacokinetic profiles of drugs and may have serious clinical implications. The natural function of serum albumin as a drug carrier is facilitated by its interaction with various cellular receptors. These receptors not only promote the uptake of drugs into cells but are also responsible for the extraordinarily long circulatory half-life of albumin. This property in combination with the presence of multiple ligand binding pockets have led to the emergence of serum albumin as an attractive vehicle for novel drug delivery systems. Here, we provide an overview of various albumin-based drug delivery strategies, classified according to their methods of drug attachment, and highlight their experimental and clinical successes.
Collapse
|
9
|
Shi Y, Zhang Y, Tian H, Wang Y, Shen Y, Zhu Q, Ding F. Improved dialytic removal of protein-bound uremic toxins by intravenous lipid emulsion in chronic kidney disease rats. Nephrol Dial Transplant 2020; 34:1842-1852. [PMID: 31071223 DOI: 10.1093/ndt/gfz079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/22/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Protein-bound uremic toxins (PBUTs) have received extensive attention, as their accumulation leads to pleiotropic toxic biological effects, while the removal of these solutes by conventional dialysis therapies is severely hampered. This study aimed to examine whether increased removal of PBUTs could be achieved with intravenous lipid emulsion (ILE). METHODS PBUTs such as 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), p-cresyl sulfate (PCS) and indoxyl sulfate (IS) were spiked with human serum albumin (HSA) solution and the inhibitory effects of free fatty acid (FFA) on the binding of CMPF, PCS and IS to HSA were examined separately in vitro by ultrafiltration. In vitro dialysis of albumin solution was then performed to investigate the effects of fatty acid (FAs) mixtures infusion on the fractional removal of PBUTs. Finally, the inhibitory effect of FFA on the binding of PBUTs to albumin was examined in uremic rats, and blood purification therapy was conducted to calculate the reduction ratio (RR) and the total solute removal (TSR) of solutes. RESULTS The percentage protein binding of CMPF, PCS and IS decreased significantly with increasing FFAs concentrations, and the inhibitory effect was more remarkable with the addition of oleic acid or linoleic acid than that of eicosapentaenoic acid and docosahexaenoic acid. In vitro infusion of FAs increased the fractional removal of CMPF to 14.40 ± 2.38%. PCS, IS and indole-3-acetic acid removal increased from 8.00 ± 2.43%, 11.68 ± 1.54% and 15.38 ± 3.97%, respectively, at baseline to 28.21 ± 5.99%, 35.42 ± 5.27% and 40.18 ± 5.05%, respectively, when FAs were present. In vivo, rat serum concentrations of free PBUTs were significantly higher in the ILE group than in the control group, and administration of ILE resulted in higher RRs and more TSR for PBUTs after 3 h of hemodialysis (HD) therapy compared with the control group. CONCLUSIONS Administration of ILE effectively increased the dialytic removal of PBUTs. This method could be applied to current HD therapy.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yumei Zhang
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huajun Tian
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Shen
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Ding
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Kawai A, Yamasaki K, Enokida T, Miyamoto S, Otagiri M. Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate. Biochem Biophys Rep 2018; 13:78-82. [PMID: 29387812 PMCID: PMC5789167 DOI: 10.1016/j.bbrep.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
Sodium 4-phenylbutyrate (PB) is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA) in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA-PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug-HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings.
Collapse
Affiliation(s)
- Akito Kawai
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Taisuke Enokida
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Shuichi Miyamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
12
|
Combined application of diclofenac and celecoxib with an opioid yields superior efficacy in metastatic bone cancer pain: a randomized controlled trial. Int J Clin Oncol 2017; 22:980-985. [DOI: 10.1007/s10147-017-1133-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/30/2017] [Indexed: 11/26/2022]
|
13
|
Belniak P, Świąder K, Szumiło M, Hyla A, Poleszak E. Comparison of physicochemical properties of suppositories containing starch hydrolysates. Saudi Pharm J 2017; 25:365-369. [PMID: 28344490 PMCID: PMC5357112 DOI: 10.1016/j.jsps.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022] Open
Abstract
The purpose of this work was to determine the effect of starch hydrolysates (SH) on the physicochemical properties of suppositories. The study was conducted with suppositories with acetaminophen (AAP) a typical antipyretic analgesic, as model drug on lipophilic (cocoa butter) and hydrophilic base (polyethylene glycol 1500 + 400). The suppositories with and without the addition of SH were examined for physicochemical tests according to European Pharmacopoeia 8th edition (Ph. Eur.): the uniformity of mass of single-dose preparation test, the softening time determination of lipophilic suppositories test, the disintegration of suppositories test, and dissolution test with flow-through apparatus. The results confirm the possibility of using starch hydrolysates as a cheap and safe addition to modify physicochemical properties of suppositories.
Collapse
Affiliation(s)
- Piotr Belniak
- Chair and Department of Apply Pharmacy, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | | | | | | | | |
Collapse
|
14
|
Chen Q, Liu Z. Albumin Carriers for Cancer Theranostics: A Conventional Platform with New Promise. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10557-10566. [PMID: 27111654 DOI: 10.1002/adma.201600038] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/05/2016] [Indexed: 05/21/2023]
Abstract
Theranostic nanoplatforms with integrated diagnostic and therapeutic functions, aiming at imaging-guided therapy to improve treatment planning, as well as combination therapy to enhance treatment efficacy, have received tremendous attention in recent years. Among numerous types of functional nanomaterials explored in this field, protein-based nanocarriers with inherent biocompatibility have also been selected as building blocks to construct multifunctional theranostic platforms. In particular, albumin, which has been extensively used as drug-delivery carriers for decades, has shown great new promise in the construction of novel imaging and therapeutic nanoagents, as demonstrated by a number of recent studies. IHere, the motivations of using albumins to build up nanoscale theranostics are discussed, and the latest progress/future perspectives in this direction are summarized.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou, Jiangsu, 215123, China
| |
Collapse
|
15
|
Fabrication of non-dissolving analgesic suppositories using 3D printed moulds. Int J Pharm 2016; 513:717-724. [PMID: 27686053 DOI: 10.1016/j.ijpharm.2016.09.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Conventional suppositories sometimes fail in exerting their therapeutic activity as the base materials melt inside body cavities. Also they are not suitable to provide long term treatment. Biomedical grade silicone elastomers may be used to fabricate non-dissolvable suppositories to overcome these disadvantages. We kneaded 4 analgesics into the 2 kinds of silicone polymers at 1%, 5% and 10% drug loading, respectively, to test their mechanical properties and drug release profiles. The optimized drug-polymer combinations were used to fabricate suppositories, and three dimensional printing (3DP) was used to create the suppository moulds. Subsequently, the drug release profiles and biocompatibility of the suppositories were studied. It was found that, the mechanical properties of the drug laden silicone elastomers and the rate of drug release from the elastomers can be tuned by varying drug-polymer combinations. The silicone elastomers containing 1% (w/w) and 5% (w/w) diclofenac sodium were the optimal formulations with prolonged drug release and biocompatibility at cellular level. These properties, together with complex geometries offered by 3DP technique, potentially made the non-dissolving suppositories promising therapeutic agents for personalized medicine.
Collapse
|
16
|
Takamura N, Tokunaga J, Ogata K, Setoguchi N. [Necessity of research of pharmaceutical departments in the creation of new pharmaceutical skills through technical education of physical assessment]. YAKUGAKU ZASSHI 2015; 135:185-8. [PMID: 25747210 DOI: 10.1248/yakushi.14-00201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical assessment skills are now being more widely accepted by pharmacists and pharmaceutical departments than in the past. This is explained by the realization that pharmacists can prevent serious adverse effects and evaluate drug efficacy for their patients through assessment, thus providing effective medical care. However, is that all physical assessment can provide to pharmacists and pharmaceutical students? These students, in turn, should recognize the "need for skill" and the "pleasure to be gained in acquiring that skill" through the physical assessment performed by doctors. They should also recognize the importance of medical devices (e.g., stethoscope, electrocardiograph and endoscope) and take responsibility for creating their own techniques for their use. Here they will consider valuable pharmaceutical skills. "Yaku-jutsu" is a pharmaceutical diagnosis to determine the time required to achieve maximum beneficial effects and effective drug administration based on that diagnosis. Pharmacists cannot gain public trust unless they relieve a patient's pain using Yaku-jutsu which has been made available to them by the research support of a pharmaceutical department.
Collapse
Affiliation(s)
- Norito Takamura
- Second Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | | | | | | |
Collapse
|
17
|
Ogata K, Takamura N, Tokunaga J, Ikeda T, Setoguchi N, Tanda K, Yamasaki T, Nishio T, Kawai K. A novel injection strategy of flurbiprofen axetil by inhibiting protein binding with 6-methoxy-2-naphthylacetic acid. Eur J Drug Metab Pharmacokinet 2014; 41:179-86. [PMID: 25537338 DOI: 10.1007/s13318-014-0248-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Flurbiprofen axetil (FPA) is an injection product and a prodrug of a non-steroidal anti-inflammatory drug (NSAID). After injection, it is rapidly hydrolyzed to the active form, flurbiprofen (FP). Since frequent injections of FPA can lead to abnormal physiology, an administration strategy is necessary to ensure there is enhancement of the analgesic efficiency of FP after a single dose and to reduce the total number of doses. FP strongly binds to site II of albumin, and thus the free (unbound) FP concentration is low. This study focused on 6-methoxy-2-naphthylacetic acid (6-MNA), the active metabolite of nabumetone (a prodrug of NSAID). We performed ultrafiltration experiments and pharmacokinetics analysis in rats to investigate whether the inhibitory effect of 6-MNA on FP binding to albumin increased the free FP concentration in vitro and in vivo. Results indicated that 6-MNA inhibited the binding of FP to albumin competitively. When 6-MNA was injected in rats, there was a significant increase in the free FP concentration and the area under concentration-time curve (AUC) calculated from the free FP concentration, while there was a significant decrease in the total (bound + free) FP concentration and the AUC calculated from the total FP concentration. These findings indicate that 6-MNA inhibits the protein binding of FP in vivo. This suggests that the frequency of FPA injections can be reduced when administered with nabumetone, as there is increase in the free FP concentration associated with pharmacological effect.
Collapse
Affiliation(s)
- Kenji Ogata
- Second Department of Clinical Pharmacy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan.
| | - Norito Takamura
- Second Department of Clinical Pharmacy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Jin Tokunaga
- Second Department of Clinical Pharmacy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Tetsuya Ikeda
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki, 889-1692, Japan
| | - Nao Setoguchi
- Second Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Kazuhiro Tanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Tetsuo Yamasaki
- Department of Pharmaceutical Chemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Toyotaka Nishio
- Shounan-Hiratuka Pharmacy, Kouei Inc., 6-2 Miyanomae, Hiratuka, Kanagawa, 254-0035, Japan
| | - Keiichi Kawai
- School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kadatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| |
Collapse
|
18
|
Osaki T, Ozaki M, Takamura N, Ogata K, Tokunaga J, Setoguchi N, Arimori K. Albumin-binding of diclofenac and the effect of a site II inhibitor in the aqueous humor of cataract patients with the instillation of diclofenac. Biopharm Drug Dispos 2014; 35:218-27. [DOI: 10.1002/bdd.1887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/14/2013] [Accepted: 12/24/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Takashi Osaki
- Department of Pharmacy University of Miyazaki Hospital; 5200 Kihara, Kiyotake-cho Miyazaki Miyazaki 889-1692 Japan
- Ozaki Eye Hospital; 15 Kamezaki Hyuga 883-0066 Japan
| | - Mineo Ozaki
- Ozaki Eye Hospital; 15 Kamezaki Hyuga 883-0066 Japan
- Department of Ophthalmology Faculty of Medicine; University of Miyazaki; 5200 Kihara, Kiyotake-cho Miyazaki Miyazaki 889-1692 Japan
| | - Norito Takamura
- Second Department of Clinical Pharmacy, School of Pharmaceutical Sciences; Kyushu University of Health and Welfare; 1714-1 Yoshino Nobeoka Miyazaki 882-8508 Japan
| | - Kenji Ogata
- Second Department of Clinical Pharmacy, School of Pharmaceutical Sciences; Kyushu University of Health and Welfare; 1714-1 Yoshino Nobeoka Miyazaki 882-8508 Japan
| | - Jin Tokunaga
- Second Department of Clinical Pharmacy, School of Pharmaceutical Sciences; Kyushu University of Health and Welfare; 1714-1 Yoshino Nobeoka Miyazaki 882-8508 Japan
| | - Nao Setoguchi
- Second Department of Clinical Pharmacy, School of Pharmaceutical Sciences; Kyushu University of Health and Welfare; 1714-1 Yoshino Nobeoka Miyazaki 882-8508 Japan
| | - Kazuhiko Arimori
- Department of Pharmacy University of Miyazaki Hospital; 5200 Kihara, Kiyotake-cho Miyazaki Miyazaki 889-1692 Japan
| |
Collapse
|
19
|
Application of liposomes in treatment of rheumatoid arthritis: quo vadis. ScientificWorldJournal 2014; 2014:978351. [PMID: 24688450 PMCID: PMC3932268 DOI: 10.1155/2014/978351] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/12/2013] [Indexed: 11/26/2022] Open
Abstract
The most common treatments for rheumatoid arthritis include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease modifying antirheumatic drugs (DMARDs), and some biological agents. However, none of the treatments available is able to achieve the ultimate goal of treatment, that is, drug-free remission. This limitation has shifted the focus of treatment to delivery strategies with an ability to deliver the drugs into the synovial cavity in the proper dosage while mitigating side effects to other tissues. A number of approaches like microemulsions, microspheres, liposomes, microballoons, cocrystals, nanoemulsions, dendrimers, microsponges, and so forth, have been used for intrasynovial delivery of these drugs. Amongst these, liposomes have proven to be very effective for retaining the drug in the synovial cavity by virtue of their size and chemical composition. The fast clearance of intra-synovially administered drugs can be overcome by use of liposomes leading to increased uptake of drugs by the target synovial cells, which in turn reduces the exposure of nontarget sites and eliminates most of the undesirable effects associated with therapy. This review focuses on the use of liposomes in treatment of rheumatoid arthritis and summarizes data relating to the liposome formulations of various drugs. It also discusses emerging trends of this promising technology.
Collapse
|