1
|
Rocha de Oliveira LQ, de Souza Nicolau HC, Barbosa Martelli DR, Martelli-Júnior H, Scariot R, Ayroza Rangel ALC, de Almeida Reis SR, Coletta RD, Machado RA. Ethnic Differences in the Brazilian Population Influence the Impact of BMP4 Genetic Variants on Susceptibility of Nonsyndromic Orofacial Clefts. Cleft Palate Craniofac J 2024; 61:1701-1712. [PMID: 37272066 DOI: 10.1177/10556656231180086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE The study evaluated the association of BMP4 tag-SNPs and SNP-SNP interactions involving genes active by BMP4 pathway during craniofacial development in the susceptibility of nonsyndromic orofacial clefts (NSOC) in the Brazilian population. DESIGN Case-control study. SETTING Brazilian Oral Cleft Group. PARTICIPANTS The study included 881 healthy controls and 800 patients with different types of NSOC: 232 with cleft lip only (NSCLO), 568 with cleft lip and palate (NSCLP), and 274 with cleft palate only (NSCPO). INTERVENTIONS The genomic DNA was genotyped with allelic discrimination assays for five BMP4 tag-SNPs (rs11623717, rs17563, rs2071047, rs2761887 and rs4898820), and analyzed their allelic and genotypic associations using multiple logistic regression. The interactions of these variants with genes involved in the BMP4 signaling pathway, including FGFR1, GREM1, NOG, VAX1 and the 4p16.2 locus, were explored. MAIN OUTCOME MEASURES BMP4 variants in the NSOC risk. RESULTS Although only nominal p values were identified when the whole sample was considered, subgroup analysis including the patients with high African genomic ancestry showed significant associations of rs2761887 with risk for nonsyndromic cleft lip with or without cleft palate (NSCL ± P)[(ORhom: 2.16; 95% CI: 1.21-3.85; p = 0.01) and (ORrec: 2.05; 95% CI: 1.21-3.47; p = 0.006)]. Thirteen significant SNP-SNP interactions involving BMP4 and the SNPs at FGFR1, GREM1, NOG and VAX1 and at locus 4p16.2 for increased risk of NSCL ± P were identified. CONCLUSIONS Our results demonstrate an increased risk of NSCL ± P in Brazilian individuals with enrichment of African ancestry in the presence of the BMP4 rs2762887 polymorphism, and reveal relevant genetic contribution of SNP-SNP epistatic interactions involving BMP4 variants to NSCL ± P risk.
Collapse
Affiliation(s)
| | | | | | - Hercílio Martelli-Júnior
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
- Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of Professor Edson Antônio Velano, Alfenas, Minas Gerais, Brazil
| | - Rafaela Scariot
- Department of Oral and Maxillofacial Surgery, School of Health Science, Federal University of Paraná, Curitiba, Brazil
| | - Ana Lúcia Carrinho Ayroza Rangel
- Center of Biological Sciences and of the Health, School of Dentistry, State University of Western Paraná, Cascavel, Paraná, Brazil
| | | | - Ricardo D Coletta
- Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Renato Assis Machado
- Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
2
|
Lara LDS, Coletta RD, Assis Machado R, Querino Rocha de Oliveira L, Martelli Júnior H, de Almeida Reis SR, Scariot R, Evaristo Ricci Volpato L. Exploring the role of the WNT5A rs566926 polymorphism and its interactions in non-syndromic orofacial cleft: a multicenter study in Brazil. J Appl Oral Sci 2024; 32:e20230353. [PMID: 38359266 PMCID: PMC11018296 DOI: 10.1590/1678-7757-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Associations between the WNT5A rs566926 variant and non-syndromic orofacial cleft (NSOC) have been reported in different populations. OBJECTIVE This study aimed to investigate the role of the rs566926 single nucleotide polymorphism (SNP) in WNT5A and its interactions with SNPs in BMP4, FGFR1, GREM1, MMP2, and WNT3 in the occurrence of NSOC in a Brazilian population. METHODOLOGY A case-control genetic association study was carried out involving participants from four regions of Brazil, totaling 801 patients with non-syndromic cleft lip with or without cleft palate (NSCL±P), 273 patients with cleft palate only (NSCPO), and 881 health volunteers without any congenital condition (control). Applying TaqMan allelic discrimination assays, we evaluated WNT5A rs566926 in an ancestry-structured multiple logistic regression analysis, considering sex and genomic ancestry as covariates. Interactions between rs566926 and variants in genes involved in the WNT5A signaling pathway (BMP4, FGFR1, GREM1, MMP2, and WNT3) were also explored. RESULTS WNT5A rs566926 was significantly associated with an increased risk of NSCL±P, particularly due to a strong association with non-syndromic cleft lip only (NSCLO), in which the C allele increased the risk by 32% (OR: 1.32, 95% CI: 1.04-1.67, p=0.01). According to the proportions of European and African genomic ancestry, the association of rs566926 reached significant levels only in patients with European ancestry. Multiple interactions were detected between WNT5A rs566926 and BMP4 rs2071047, GREM1 rs16969681 and rs16969862, and FGFR1 rs7829058. CONCLUSION The WNT5A rs566926 polymorphism was associated with NSCL±P, particularly in individuals with NSCLO and high European ancestry. Epistatic interactions involving WNT5A rs566926 and variants in BMP4, GREM1, and FGFR1 may contribute to the risk of NSCL±P in the Brazilian population.
Collapse
Affiliation(s)
- Lorraynne Dos Santos Lara
- Universidade de Cuiabá, Programa de Pós-Graduação em Ciências Odontológicas Integradas, Faculdade de Odontologia de Cuiabá, Cuiabá, MT, Brasil
| | - Ricardo D Coletta
- Universidade Estadual de Campinas, Departamento de Diagnóstico Oral e Programa de Pós-Graduação em Biologia Buco-Dental, Faculdade de Odontologia de Piracicaba, Piracicaba, SP, Brasil
| | - Renato Assis Machado
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Programa de Pós-Graduação em Biologia Buco-Dental, Piracicaba, SP, Brasil
| | - Lilianny Querino Rocha de Oliveira
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Programa de Pós-Graduação em Biologia Buco-Dental, Piracicaba, SP, Brasil
| | - Hercílio Martelli Júnior
- Universidade Estadual de Montes Claros, Departamento de Odontologia, Clínica de Estomatologia, Montes Claros, MG, Brasil, e
| | | | - Rafaela Scariot
- Universidade Federal do Paraná, setor de Ciências da Saúde, Departamento de Estomatologia, Disciplina de Cirurgia Bucomaxilofacial, Curitiba, PR, Brasil
| | - Luiz Evaristo Ricci Volpato
- Universidade de Cuiabá, Programa de Pós-Graduação em Ciências Odontológicas Integradas, Faculdade de Odontologia de Cuiabá, Cuiabá, MT, Brasil
| |
Collapse
|
3
|
Pham LNG, Niimi T, Suzuki S, Nguyen MD, Nguyen LCH, Nguyen TD, Hoang KA, Nguyen DM, Sakuma C, Hayakawa T, Hiyori M, Natsume N, Furukawa H, Imura H, Akashi J, Ohta T, Natsume N. Association between IRF6, TP63, GREM1 Gene Polymorphisms and Non-Syndromic Orofacial Cleft Phenotypes in Vietnamese Population: A Case-Control and Family-Based Study. Genes (Basel) 2023; 14:1995. [PMID: 38002937 PMCID: PMC10671090 DOI: 10.3390/genes14111995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to identify potential variants in the TP63-IRF6 pathway and GREM1 for the etiology of non-syndromic orofacial cleft (NSOFC) among the Vietnamese population. By collecting 527 case-parent trios and 527 control samples, we conducted a stratified analysis based on different NSOFC phenotypes, using allelic, dominant, recessive and over-dominant models for case-control analyses, and family-based association tests for case-parent trios. Haplotype and linkage disequilibrium analyses were also conducted. IRF6 rs2235375 showed a significant association with an increased risk for non-syndromic cleft lip and palate (NSCLP) and cleft lip with or without cleft palate (NSCL/P) in the G allele, with pallele values of 0.0018 and 0.0003, respectively. Due to the recessive model (p = 0.0011) for the NSCL/P group, the reduced frequency of the GG genotype of rs2235375 was associated with a protective effect against NSCL/P. Additionally, offspring who inherited the G allele at rs2235375 had a 1.34-fold increased risk of NSCL/P compared to the C allele holders. IRF6 rs846810 and a G-G haplotype at rs2235375-rs846810 of IRF6 impacted NSCL/P, with p-values of 0.0015 and 0.0003, respectively. In conclusion, our study provided additional evidence for the association of IRF6 rs2235375 with NSCLP and NSCL/P. We also identified IRF6 rs846810 as a novel marker associated with NSCL/P, and haplotypes G-G and C-A at rs2235375-rs846810 of IRF6 associated with NSOFC.
Collapse
Affiliation(s)
- Loc Nguyen Gia Pham
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Teruyuki Niimi
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Satoshi Suzuki
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
| | - Minh Duc Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Linh Cao Hoai Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Tuan Duc Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Kien Ai Hoang
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Duc Minh Nguyen
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- School of Odonto-Stomatology, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Chisato Sakuma
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Toko Hayakawa
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Makino Hiyori
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Nagana Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Hiroo Furukawa
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Junko Akashi
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu 061-0293, Japan;
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| |
Collapse
|
4
|
Guan X, He Y, Li Y, Shi C, Wei Z, Zhao R, Han Y, Pan L, Yang J, Hou TZ. Gremlin aggravates periodontitis via activating the NF-κB signaling pathway. J Periodontol 2022; 93:1589-1602. [PMID: 34993960 DOI: 10.1002/jper.21-0474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gremlin has been reported to regulate inflammation and osteogenesis. Periodontitis is a destructive disease degenerating periodontal tissues, therefore leads to alveolar bone resorption and tooth loss. Based on the importance of Gremlin's bio-activity, the aim of this study is to, in vivo and in vitro, unveil the function of Gremlin in regulating the development of periodontitis and its consequent effects on alveolar bone loss. METHODS Clinical specimens were used to determine the expression of Gremlin in periodontal tissues by immunohistochemical staining and western blot. Then utilizing the rat periodontitis model to investigate the function of gremlin-regulated nuclear factor-kappa B (NF-κB) pathway during the development of periodontal inflammation and the alveolar bone loss. Lastly, the regulation of the osteogenesis of human periodontal ligament stem cells (hPDLSCs) by Gremlin under inflamed condition was analyzed by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS We found clinically and experimentally that the expression of Gremlin is markedly increased in periodontitis tissues. Interestingly, we revealed that Gremlin regulated the progress of periodontitis via regulating the activities of NF-κB pathway and interleukin-1β (IL-1β). Notably, we observed that Gremlin influenced the osteogenesis of hPDLSCs. Thus, our present study identified Gremlin as a new key regulator for development of periodontitis. CONCLUSIONS Our current study illustrated that Gremlin acts as a crucial mediator and possibly serves as a potential diagnostic marker for periodontitis. Discovery of new factors involved in the pathophysiology of periodontitis could contribute to the development of novel therapeutic treatment for the disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Zhao
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yue Han
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lifei Pan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tie Zhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
5
|
Deng F, Zhao J, Jia W, Fu K, Zuo X, Huang L, Wang N, Xia H, Zhang Y, Fu W, Liu G. Increased hypospadias risk by GREM1 rs3743104[G] in the southern Han Chinese population. Aging (Albany NY) 2021; 13:13898-13908. [PMID: 33962391 PMCID: PMC8202882 DOI: 10.18632/aging.202983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Hypospadias is a common congenital genitourinary malformation characterized by ventral opening of the urethral meatus. As a member of the bone morphogenic protein antagonist family, GREM1 has been identified as associated with susceptibility to hypospadias in the European population. The present study was designed to elaborate on the mutual relationship between replicated single-nucleotide polymorphisms (SNPs) and hypospadias in Asia's largest case-control study in the Southern Han Chinese population involving 577 patients and 654 controls. Our results demonstrate that the GREM1 risk allele rs3743104[G] markedly increases the risk of mild/moderate and severe hypospadias (P<0.01, 0.28≤OR≤0.66). GTEx expression quantitative trait locus data revealed that the eQTL SNP rs3743104 has more associations of eQTL SNP rs3743104 and GREM1 targets in pituitary tissues. Additionally, Bioinformatics and Luciferase Assays show that miR-182 is identified as a suppressor for GREM1 expression, likely through regulation of its binding affinity to rs3743104 locus. In conclusion, the GREM1 risk allele rs3743104[G] increases hypospadias susceptibility in mild/moderate and severe cases among the southern Han population. rs3743104 regulates GREM1 expression by altering the binding affinity of miR-182 to their locus. Collectively, this study provides new evidence that GREM1 rs3743104 is associated with an increased risk of hypospadias. These findings provide a promising biomarker and merit further exploration.
Collapse
Affiliation(s)
- Fuming Deng
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Kai Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ning Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiming Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
6
|
Rafighdoost H, Poudineh A, Bahari G, Ghaffari H, Hashemi M. Association of Genetic Polymorphisms of GREM1 Gene with Susceptibility to Non-Syndromic Cleft Lip with or without Cleft Palate in an Iranian Population. Fetal Pediatr Pathol 2020; 39:409-421. [PMID: 31650875 DOI: 10.1080/15513815.2019.1666329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is common congenital birth anomaly with multifactorial etiology. The GREM1 gene has been proposed to play a role in oral clefts development.Objective: The aim of the present study was to evaluate the correlation between GREM1 polymorphisms and the risk of NSCL/P in an Iranian population.Methods: Genotyping of rs7162202, rs12915554, rs3743105, rs1129456, and rs10318 polymorphisms of GREM1 gene in 150 NSCL/P and 152 healthy subjects was determined by the PCR-RFLP or T-ARMS-PCR.Results: The findings showed that the rs12915554 variant significantly increased the risk of NSCL/P in heterozygous (OR = 4.20, 95%CI = 2.46-7.11, p < 0.0001, AC vs AA), and allele (OR = 3.17, 95%CI = 2.00-5.08, p < 0.0001, C vs A) genetic models. The rs3743105 polymorphism was correlated with reduced risk of NSCL/P in heterozygous (OR = 0.49, 95%CI = 0.29-0.83, p = 0.008, AG vs GG) and dominant (OR = 0.54, 95%CI = 0.33-0.89, p = 0.018, GA + AA vs GG) genetic models. The rs1129456 variant was positively associated with the risk of NSCL/P in heterozygous (OR = 2.91, 95%CI = 1.12-7.38, p = 0.028, AT vs AA) and allele (OR = 2.80, 95%CI = 2.80-6.95, p = 0.031, T vs C). The rs10318 polymorphism significantly reduced NSCL/P risk in homozygous (OR = 0.20, 95%CI = 0.06-0.67, p = 0.013, TT vs CC), dominant (OR = 0.57, 95%CI = 0.36-0.91, p = 0.019, CT + CC vs CC), recessive (OR = 0.24, 95%CI = 0.07-0.76, p = 0.031, TT vs CT + CC), and allele (OR = 0.57, 95%CI = 0.38-0.84, p = 0.005, T vs C). No correlation was observed between rs7162202 polymorphism and NSCL/P.Conclusion: The findings support that GREM1 polymorphisms are involved in NSCL/P susceptibility in an Iranian population.
Collapse
Affiliation(s)
- Houshang Rafighdoost
- Department of Anatomy, Faculty of medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Poudineh
- Department of Anatomy, Faculty of medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Ghaffari
- Department of Anatomy, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Hashemi
- Department of Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
7
|
Zhou YL, Zhu WC, Shi B, Jia ZL. [Association between platelet-derived growth factor-C single nucleotide polymorphisms and nonsyndromic cleft lip with or without cleft palate in Western Chinese population]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:364-370. [PMID: 32865352 DOI: 10.7518/hxkq.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the association between two single nucleotide polymorphisms (SNPs), namely, rs4691383 and rs7667857, in the platelet-derived growth factor-C (PDGF-C) gene, the genotypes, environmental exposure factors, and nonsyndromic cleft lip with or without cleft palate (NSCL/P) in Western Chinese population. METHODS A total of 268 case-parent trios were selected, and two SNPs (rs4691383 andrs7667857) were genotyped by using polymerase chain reaction and restriction enzyme fragment length polymorphic method and direct sequencing method. Hardy-Weinberg equilibrium, linkage disequilibrium test, transmission disequilibrium test, and haplotype analysis were conducted to analyze the data. Meanwhile, the questionnaires on the epidemiology of cleft lip and palate filled by the included samples were collected, and the interaction between the genotypes of the two SNPs and environmental exposure factors was assessed by conditional logistic regression. RESULTS The A allele at rs4691383 and the G allele at rs7667857 of PDGF-C gene were over-transmitted for NSCL/P (P<0.05). No interaction effect was observed between the three environmental exposure factors (history of smoking/passive smoking, folic acid supplementation, and long-term inhalation of harmful environmental gases) and the PDGF-C genotypes among NSCL/P (P>0.05). CONCLUSIONS The rs4691383 and rs7667857 at PDGF-C gene are closely related to the occurrence of NSCL/P in Western Chinese population. However, the interaction between environmental exposure factors and PDGF-C genotypes is not obvious in the occurrence of NSCL/P.
Collapse
Affiliation(s)
- Yu-Lan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wen-Chao Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Machado RA, de Oliveira Silva C, Martelli-Junior H, das Neves LT, Coletta RD. Machine learning in prediction of genetic risk of nonsyndromic oral clefts in the Brazilian population. Clin Oral Investig 2020; 25:1273-1280. [PMID: 32617779 DOI: 10.1007/s00784-020-03433-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Genetic variants in multiple genes and loci have been associated with the risk of nonsyndromic cleft lip with or without cleft palate (NSCL ± P). However, the estimation of risk remains challenge, because most of these variants are population-specific rendering the identification of the underlying genetic risk difficult. Herein we examined the use of machine learning network in previously reported single nucleotide polymorphisms (SNPs) to predict risk of NSCL ± P in the Brazilian population. MATERIALS AND METHODS Random forest and neural network methods were applied in 72 SNPs in a case-control sample composed by 722 NSCL ± P and 866 controls for discrimination of NSCL ± P risk. SNP-SNP interactions and functional annotation biological processes associated with the identified NSCL ± P risk genes were verified. RESULTS Supervised random forest decision trees revealed high scores of importance for the SNPs rs11717284 and rs1875735 in FGF12, rs41268753 in GRHL3, rs2236225 in MTHFD1, rs2274976 in MTHFR, rs2235371 and rs642961 in IRF6, rs17085106 in RHPN2, rs28372960 in TCOF1, rs7078160 in VAX1, rs10762573 and rs2131960 in VCL, and rs227731 in 17q22, with an accuracy of 99% and an error rate of approximately 3% to predict the risk of NSCL ± P. Those same 13 SNPs were considered the most important for the neural network to effectively predict NSCL ± P risk, with an overall accuracy of 94%. Multivariate regression model revealed significant interactions among all SNPs, with an exception of those in FGF12 and MTHFD1. The most significantly biological processes for selected genes were those involved in tissue and epithelium development; neural tube closure; and metabolism of methionine, folate, and homocysteine. CONCLUSIONS Our results provide novel clues for genetic mechanism studies of NSCL ± P and point out for a machine learning model composed by 13 SNPs that is capable of predicting NSCL ± P risk. CLINICAL RELEVANCE Although validation is necessary, this genetic panel can be useful in the near future to assist in NSCL ± P genetic counseling.
Collapse
Affiliation(s)
- Renato Assis Machado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, CEP 13414-018, Brazil
- Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Carolina de Oliveira Silva
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, CEP 13414-018, Brazil
| | - Hercílio Martelli-Junior
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
- Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of José Rosario Vellano, Alfenas, Minas Gerais, Brazil
| | - Lucimara Teixeira das Neves
- Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, CEP 13414-018, Brazil.
| |
Collapse
|