1
|
Romero A, Walker BL, Krneta-Stankic V, Gerner-Mauro K, Youmans L, Miller RK. The dynamics of tubulogenesis in development and disease. Development 2025; 152:DEV202820. [PMID: 39959988 PMCID: PMC11883272 DOI: 10.1242/dev.202820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Tubes are crucial for the function of many organs in animals given their fundamental roles in transporting and exchanging substances to maintain homeostasis within an organism. Therefore, the development and maintenance of these tube-like structures within organs is a vital process. Tubes can form in diverse ways, and advances in our understanding of the molecular and cellular mechanisms underpinning these different modes of tubulogenesis have significant impacts in many biological contexts, including development and disease. This Review discusses recent progress in understanding developmental mechanisms underlying tube formation.
Collapse
Affiliation(s)
- Adrian Romero
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Brandy L. Walker
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamryn Gerner-Mauro
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Baylor College of Medicine, Program in Development, Disease Models & Therapeutics, Houston, TX 77030, USA
| | - Lydia Youmans
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Molecular and Translational Biology, Houston, TX 77030, USA
| |
Collapse
|
2
|
Lee S, Kim KH, Lee ES, Kim VJ, Kim SP, Ban S, Wang KC, Lee JY. The transcriptomic landscape of caudal cell mass in different developmental stages of the chick embryo. Childs Nerv Syst 2022; 38:2101-2111. [PMID: 36181521 DOI: 10.1007/s00381-022-05675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The caudal cell mass (CCM) is an aggregate of undifferentiated pluripotent cells and the main player in secondary neurulation. Previous studies have elucidated the dynamic fate of the multipotent cell lineages, with a recent interest in the neuromesodermal progenitors. However, a transcriptomic analysis of the CCM during secondary neurulation has not been performed yet. METHODS We analyzed RNA sequencing data of CCM samples at three different developmental stages of chicken embryos; HH16 (largest CCM phase), HH20 (secondary neural tube formation phase), and HH28 (degeneration phase). RESULTS The transcriptomic profiles were clearly distinguishable according to developmental stage, and HH20 was shown to have not only intermediate, but also unique properties in secondary neurulation. A total of 10,666 differentially expressed genes, including FGF18 and GDF11, were identified and enriched in several gene ontologies related to embryogenesis or organogenesis. We also found that genes encoding transcription factors, such as TWIST2, IRX4, HOXB4, HOXD13, LIN28A, CDX4, and Brachyury, were among the top-ranked differentially expressed genes. CONCLUSION Through transcriptomic profiling, we provided a picture of the developmental process of the CCM. We identified several key molecules or pathways involved in secondary neurulation and the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Kyung Hyun Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Eun Sun Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Veronica Jihyun Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Saet Pyoul Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Saeli Ban
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu-Chang Wang
- Center for Rare Cancers, National Cancer Center, Goyang, Republic of Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea. .,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Tamkeen N, AlOmar SY, Alqahtani SAM, Al-Jurayyan A, Farooqui A, Tazyeen S, Ahmad N, Ishrat R. Identification of the Key Regulators of Spina Bifida Through Graph-Theoretical Approach. Front Genet 2021; 12:597983. [PMID: 33889172 PMCID: PMC8056047 DOI: 10.3389/fgene.2021.597983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/19/2021] [Indexed: 11/23/2022] Open
Abstract
Spina Bifida (SB) is a congenital spinal cord malformation. Efforts to discern the key regulators (KRs) of the SB protein-protein interaction (PPI) network are requisite for developing its successful interventions. The architecture of the SB network, constructed from 117 manually curated genes was found to self-organize into a scale-free fractal state having a weak hierarchical organization. We identified three modules/motifs consisting of ten KRs, namely, TNIP1, TNF, TRAF1, TNRC6B, KMT2C, KMT2D, NCOA3, TRDMT1, DICER1, and HDAC1. These KRs serve as the backbone of the network, they propagate signals through the different hierarchical levels of the network to conserve the network’s stability while maintaining low popularity in the network. We also observed that the SB network exhibits a rich-club organization, the formation of which is attributed to our key regulators also except for TNIP1 and TRDMT1. The KRs that were found to ally with each other and emerge in the same motif, open up a new dimension of research of studying these KRs together. Owing to the multiple etiology and mechanisms of SB, a combination of several biomarkers is expected to have higher diagnostic accuracy for SB as compared to using a single biomarker. So, if all the KRs present in a single module/motif are targetted together, they can serve as biomarkers for the diagnosis of SB. Our study puts forward some novel SB-related genes that need further experimental validation to be considered as reliable future biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Naaila Tamkeen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Abdullah Al-Jurayyan
- Immunology and HLA Section, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
5
|
Panda PK, Mallik KC, Patel R, Barik M. Molecular Basis of Spina Bifida: Recent Advances and Future Prospectives. J Pediatr Neurosci 2019; 14:16-19. [PMID: 31316638 PMCID: PMC6601120 DOI: 10.4103/jpn.jpn_20_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Spina bifida (SB) (spinal neural tube [NT] defects) is basically caused by an abnormality at the closure of the NT. Materials and Methods: Molecular researchers have now got new etiopathogenesis of the defective neural tube closure. Although molecular mechanisms in the SB is really important taxation for further work. We understand through the unique novel mutant responsible genes and modifying genes and included the different molecular aspects of SB from the available tools and databases and excluded the case reports. Statistical Analysis: We use here simple statistics (percentage, mean, median, and average) through the Statistical Package for the Social Sciences (SPSS), version 14, and found P > 0.0001 to be significant. Results: We have reported that the majority of 90% genes are responsible in SB and their associated diseases. These innovative unique patterns of responsible genes attached with the result abnormalities at the neuronal and non neuronal tissues are equally important for the SB and NTC. Conclusion: Our present ideology is aiming to understand the inductive and direct interactions of the downstream target sites among responsible regulating genes (RRGs). It is an unique pattern of genetic roadmap to control and guides the neurulation and may provide further insights into the causes of SB and may help to develop new molecular-targeted therapy (MTT).
Collapse
Affiliation(s)
- Prateek Kumar Panda
- Department of Paediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kanhu Charan Mallik
- Department of Radiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ranjankumar Patel
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mayadhar Barik
- Department of Paediatric Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
6
|
Kousa YA, Zhu H, Fakhouri WD, Lei Y, Kinoshita A, Roushangar RR, Patel NK, Agopian AJ, Yang W, Leslie EJ, Busch TD, Mansour TA, Li X, Smith AL, Li EB, Sharma DB, Williams TJ, Chai Y, Amendt BA, Liao EC, Mitchell LE, Bassuk AG, Gregory S, Ashley-Koch A, Shaw GM, Finnell RH, Schutte BC. The TFAP2A-IRF6-GRHL3 genetic pathway is conserved in neurulation. Hum Mol Genet 2019; 28:1726-1737. [PMID: 30689861 PMCID: PMC6494790 DOI: 10.1093/hmg/ddz010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 11/26/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Mutations in IRF6, TFAP2A and GRHL3 cause orofacial clefting syndromes in humans. However, Tfap2a and Grhl3 are also required for neurulation in mice. Here, we found that homeostasis of Irf6 is also required for development of the neural tube and associated structures. Over-expression of Irf6 caused exencephaly, a rostral neural tube defect, through suppression of Tfap2a and Grhl3 expression. Conversely, loss of Irf6 function caused a curly tail and coincided with a reduction of Tfap2a and Grhl3 expression in tail tissues. To test whether Irf6 function in neurulation was conserved, we sequenced samples obtained from human cases of spina bifida and anencephaly. We found two likely disease-causing variants in two samples from patients with spina bifida. Overall, these data suggest that the Tfap2a-Irf6-Grhl3 genetic pathway is shared by two embryologically distinct morphogenetic events that previously were considered independent during mammalian development. In addition, these data suggest new candidates to delineate the genetic architecture of neural tube defects and new therapeutic targets to prevent this common birth defect.
Collapse
Affiliation(s)
- Youssef A Kousa
- Departments of Biochemistry and Molecular Biology
- Division of Neurology, Childrens National Health System
- Center for Neuroscience Research, The Childrens Research Institute, Washington, DC, USA
| | - Huiping Zhu
- Dell Pediatric Research Institute, Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Walid D Fakhouri
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yunping Lei
- Dell Pediatric Research Institute, Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University, Nagasaki, Japan
| | | | | | - A J Agopian
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Tamer A Mansour
- Genetics PhD Program
- Department of Clinical Pathology, School of Medicine, University of Mansoura, Mansoura, Egypt
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Xiao Li
- Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | - Edward B Li
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Dhruv B Sharma
- Center for Statistical Training & Consulting, Michigan State University, East Lansing, MI, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Brad A Amendt
- Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Laura E Mitchell
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | | | - Simon Gregory
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Brian C Schutte
- Departments of Biochemistry and Molecular Biology
- Microbiology and Molecular Genetics
- Genetics PhD Program
- Pediatrics and Human Development
| |
Collapse
|
7
|
Lin S, Ren A, Wang L, Santos C, Huang Y, Jin L, Li Z, Greene NDE. Aberrant methylation of Pax3 gene and neural tube defects in association with exposure to polycyclic aromatic hydrocarbons. Clin Epigenetics 2019; 11:13. [PMID: 30665459 PMCID: PMC6341549 DOI: 10.1186/s13148-019-0611-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are common and severe congenital malformations. Pax3 is an essential gene for neural tube closure in mice but it is unknown whether altered expression or methylation of PAX3 contributes to human NTDs. We examined the potential role of hypermethylation of Pax3 in the development of NTDs by analyzing human NTD cases and a mouse model in which NTDs were induced by benzo[a]pyrene (BaP), a widely studied polycyclic aromatic hydrocarbon (PAH). METHODS We extracted methylation information of PAX3 in neural tissues from array data of ten NTD cases and eight non-malformed controls. A validation study was then performed in a larger independent population comprising 73 NTD cases and 29 controls. Finally, we examined methylation patterns and expression of Pax3 in neural tissues from mouse embryos of dams exposed to BaP or BaP and vitamin E. RESULTS Seven CpG sites in PAX3 were hypermethylated in NTD fetuses as compared to controls in the array data. In the validation phase, significantly higher methylation levels in the body region of PAX3 were observed in NTD cases than in controls (P = 0.003). And mean methylation intensity in the body region of PAX3 in fetal neural tissues was positively correlated with median concentrations of PAH in maternal serum. In the mouse model, BaP-induced NTDs were associated with hypermethylation of specific CpG sites within both the promoter and body region of Pax3. Supplementation with vitamin E via chow decreased the rate of NTDs, partly recovered the repressed total antioxidant capacity in mouse embryos exposed to BaP, and this was accompanied by the normalization of Pax3 methylation level and gene expression. CONCLUSION Hypermethylation of Pax3 may play a role in the development of NTDs; DNA methylation aberration may be caused by exposure to BaP, with possible involvement of oxidative stress.
Collapse
Affiliation(s)
- Shanshan Lin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.,Division of Birth Cohort Study, and Department of Neonatal Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.
| | - Chloe Santos
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Yun Huang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Nicholas D E Greene
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
8
|
Lupo PJ, Agopian AJ, Castillo H, Castillo J, Clayton GH, Dosa NP, Hopson B, Joseph DB, Rocque BG, Walker WO, Wiener JS, Mitchell LE. Genetic epidemiology of neural tube defects. J Pediatr Rehabil Med 2017; 10:189-194. [PMID: 29125517 PMCID: PMC8085973 DOI: 10.3233/prm-170456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been estimated that 60-70% of neural tube defects (NTDs) have a genetic component, but few causative genes have been identified. The lack of information on genes associated with non-syndromic NTDs in humans is especially notable as the "genomic revolution" has led to new tools (e.g., genome-wide genotyping arrays, next-generation sequencing) that are helping to elucidate the full spectrum of genetic variation (from common to rare) contributing to complex traits, including structural birth defects. However, the application of modern genomic approaches to the study of NTDs has lagged behind that of some other common structural birth defects. This may be due to the difficulty of assembling large study cohorts for anencephaly or spina bifida. The purpose of this review is to outline the evolution of genetic studies of NTDs, from studies of familial aggregation to candidate gene and genome-wide association studies, through whole-exome and whole-genome sequencing. Strategies for addressing gaps in NTD genetic research are also explored.
Collapse
Affiliation(s)
- Philip J Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - A J Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| | - Heidi Castillo
- Section of Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Castillo
- Section of Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gerald H Clayton
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado, Aurora, CO, USA
| | - Nienke P Dosa
- Department of Pediatrics, Center for Development Behavior and Genetics, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Betsy Hopson
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B Joseph
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon G Rocque
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William O Walker
- Division of Developmental Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - John S Wiener
- Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| |
Collapse
|
9
|
Zhao T, Gan Q, Stokes A, Lassiter RNT, Wang Y, Chan J, Han JX, Pleasure DE, Epstein JA, Zhou CJ. β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development 2013; 141:148-57. [PMID: 24284205 DOI: 10.1242/dev.101550] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-canonical Wnt/planar cell polarity (PCP) signaling plays a primary role in the convergent extension that drives neural tube closure and body axis elongation. PCP signaling gene mutations cause severe neural tube defects (NTDs). However, the role of canonical Wnt/β-catenin signaling in neural tube closure and NTDs remains poorly understood. This study shows that conditional gene targeting of β-catenin in the dorsal neural folds of mouse embryos represses the expression of the homeobox-containing genes Pax3 and Cdx2 at the dorsal posterior neuropore (PNP), and subsequently diminishes the expression of the Wnt/β-catenin signaling target genes T, Tbx6 and Fgf8 at the tail bud, leading to spina bifida aperta, caudal axis bending and tail truncation. We demonstrate that Pax3 and Cdx2 are novel downstream targets of Wnt/β-catenin signaling. Transgenic activation of Pax3 cDNA can rescue the closure defect in the β-catenin mutants, suggesting that Pax3 is a key downstream effector of β-catenin signaling in the PNP closure process. Cdx2 is known to be crucial in posterior axis elongation and in neural tube closure. We found that Cdx2 expression is also repressed in the dorsal PNPs of Pax3-null embryos. However, the ectopically activated Pax3 in the β-catenin mutants cannot restore Cdx2 mRNA in the dorsal PNP, suggesting that the presence of both β-catenin and Pax3 is required for regional Cdx2 expression. Thus, β-catenin signaling is required for caudal neural tube closure and elongation, acting through the transcriptional regulation of key target genes in the PNP.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|