1
|
Hinojosa MG, Johansson Y, Cediel-Ulloa A, Ivanova E, Gabring N, Gliga A, Forsby A. Evaluation of mRNA markers in differentiating human SH-SY5Y cells for estimation of developmental neurotoxicity. Neurotoxicology 2023; 97:65-77. [PMID: 37210002 DOI: 10.1016/j.neuro.2023.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Current guidelines for developmental neurotoxicity (DNT) evaluation are based on animal models. These have limitations so more relevant, efficient and robust approaches for DNT assessment are needed. We have used the human SH-SY5Y neuroblastoma cell model to evaluate a panel of 93 mRNA markers that are frequent in Neuronal diseases and functional annotations and also differentially expressed during retinoic acid-induced differentiation in the cell model. Rotenone, valproic acid (VPA), acrylamide (ACR) and methylmercury chloride (MeHg) were used as DNT positive compounds. Tolbutamide, D-mannitol and clofibrate were used as DNT negative compounds. To determine concentrations for exposure for gene expression analysis, we developed a pipeline for neurite outgrowth assessment by live-cell imaging. In addition, cell viability was measured by the resazurin assay. Gene expression was analyzed by RT-qPCR after 6 days of exposure during differentiation to concentrations of the DNT positive compounds that affected neurite outgrowth, but with no or minimal effect on cell viability. Methylmercury affected cell viability at lower concentrations than neurite outgrowth, hence the cells were exposed with the highest non-cytotoxic concentration. Rotenone (7.3nM) induced 32 differentially expressed genes (DEGs), ACR (70µM) 8 DEGs, and VPA (75µM) 16 DEGs. No individual genes were significantly dysregulated by all 3 DNT positive compounds (p<0.05), but 9 genes were differentially expressed by 2 of them. Methylmercury (0.8nM) was used to validate the 9 DEGs. The expression of SEMA5A (encoding semaphorin 5A) and CHRNA7 (encoding nicotinic acetylcholine receptor subunit α7) was downregulated by all 4 DNT positive compounds. None of the DNT negative compounds dysregulated any of the 9 DEGs in common for the DNT positive compounds. We suggest that SEMA5A or CHRNA7 should be further evaluated as biomarkers for DNT studies in vitro since they also are involved in neurodevelopmental adverse outcomes in humans.
Collapse
Affiliation(s)
- M G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Y Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - A Cediel-Ulloa
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, 752 36, Uppsala, Sweden
| | - E Ivanova
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - N Gabring
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - A Gliga
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | - A Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
2
|
Manthos K, Theotokis P, Dermitzakis I, Avramidou E, Meditskou S, Manthou ME, Emmanouil‐Nikoloussi E. Valproic acid induced selective apoptosis of ocular fibrous tunic in mice fetuses. Birth Defects Res 2022; 114:1257-1265. [DOI: 10.1002/bdr2.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kyriakos Manthos
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Paschalis Theotokis
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology AHEPA University Hospital Thessaloniki Greece
| | - Iasonas Dermitzakis
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Eleni Avramidou
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Soultana Meditskou
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria Eleni Manthou
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Elpida‐Niki Emmanouil‐Nikoloussi
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Department of Histology‐Embryology, Department of Dentistry, School of Medicine European University of Cyprus Nicosia Cyprus
| |
Collapse
|
3
|
Anti-proliferative and Apoptotic Effects of Valproic Acid on HeLa Cells. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Valproic acid (VPA), a branched short-chain fatty acid and histone deacetylase (HDAC) inhibitor, has diverse biological activities in human cells, including anti-cancer properties. Objectives: In the present study, we tested the cytotoxicity of VPA on the proliferation, cell cycle, and apoptosis of the human cervical cancer cell line, HeLa. Methods: HeLa cell line was cultured in Dulbecco’s modified eagle medium (DMEM) and the cytotoxicity effect of VPA (at 0 - 100 mM) on the HeLa cell was evaluated, using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay for 3 incubation times (24, 48, and 72 h). The effects of VPA on cell cycle arrest and apoptosis were evaluated, using flow cytometry. In addition, the alterations in the expression of Bax, Bcl-2, p53, and p21 were assessed with real‐time polymerase chain reaction (PCR). Results: Valproic acid reduced the viability of HeLa cells in a concentration- and time-dependent manner, and the IC50 values at 24, 48, and 72 h were 32.06, 21.29, and 14.51 mM, respectively. Further, VPA treatment remarkably increased the apoptosis of HeLa cells and arrested cells at the sub-G1 phase with a significant reduction in G2-M phase populations. The real-time PCR results demonstrated a significant increase in the expression of pro-apoptotic genes, including Bax, p53, and p21, as well as a reduction in the levels of the anti-apoptotic gene, Bcl-2. Conclusions: Valproic acid inhibits the proliferation of the HeLa cell line through the induction of the intrinsic pathway of apoptosis in a p35-dependent manner.
Collapse
|
4
|
Tsai HC, Wei KC, Chen PY, Huang CY, Chen KT, Lin YJ, Cheng HW, Chen YR, Wang HT. Valproic Acid Enhanced Temozolomide-Induced Anticancer Activity in Human Glioma Through the p53-PUMA Apoptosis Pathway. Front Oncol 2021; 11:722754. [PMID: 34660288 PMCID: PMC8518553 DOI: 10.3389/fonc.2021.722754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma (GBM), the most lethal type of brain tumor in adults, has considerable cellular heterogeneity. The standard adjuvant chemotherapeutic agent for GBM, temozolomide (TMZ), has a modest response rate due to the development of drug resistance. Multiple studies have shown that valproic acid (VPA) can enhance GBM tumor control and prolong survival when given in conjunction with TMZ. However, the beneficial effect is variable. In this study, we analyzed the impact of VPA on GBM patient survival and its possible correlation with TMZ treatment and p53 gene mutation. In addition, the molecular mechanisms of TMZ in combination with VPA were examined using both p53 wild-type and p53 mutant human GBM cell lines. Our analysis of clinical data indicates that the survival benefit of a combined TMZ and VPA treatment in GBM patients is dependent on their p53 gene status. In cellular experiments, our results show that VPA enhanced the antineoplastic effect of TMZ by enhancing p53 activation and promoting the expression of its downstream pro-apoptotic protein, PUMA. Our study indicates that GBM patients with wild-type p53 may benefit from a combined TMZ+VPA treatment.
Collapse
Affiliation(s)
- Hong-Chieh Tsai
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan.,Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan.,Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ko-Ting Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Jui Lin
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Wei Cheng
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Rou Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Doctor Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Adewole KE, Attah AF, Osawe SO. Exploring phytotherapeutic approach in the management of valproic acid-induced toxicity. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00575-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Manthou ME, Meditskou S, Lykartsis C, Sapalidis K, Sorkou K, Emmanouil-Nikoloussi EN. The role of neuronal apoptosis in Valproic Acid brain-related teratogenesis: a histochemical and immunohistochemical study in BALB/c mice. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:813-819. [PMID: 33817722 PMCID: PMC8112781 DOI: 10.47162/rjme.61.3.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The purpose of this study was to examine the teratogenic effects of Valproic Acid (VPA) and to investigate the role of apoptosis in neural tissue development. Although an apoptotic activity due to VPA has been reported, a direct connection of VPA-induced apoptosis with embryonic brain and∕or spine malformations and teratogenesis has not yet been established. MATERIALS AND METHODS VPA was administered to BALB∕c mice, from the 7th to the 10th gestational days. Macroscopical congenital anomalies were registered under a stereomicroscope and were further histologically studied. Immunohistochemistry was performed with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) staining. RESULTS Birth defects were described and an increase of the apoptotic activity in the brain was immunohistochemically identified. CONCLUSIONS Considering the increased and very intense TUNEL expression of the neural cells of treated animals' fetuses, it is suggested that VPA triggers a pathological increase of apoptosis resulting in an imbalance between cell proliferation and cell death, the final result of which is malformation.
Collapse
Affiliation(s)
- Maria Eleni Manthou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece;
| | | | | | | | | | | |
Collapse
|
7
|
Li ASW, Marikawa Y. Methoxyacetic acid inhibits histone deacetylase and impairs axial elongation morphogenesis of mouse gastruloids in a retinoic acid signaling-dependent manner. Birth Defects Res 2020; 112:1043-1056. [PMID: 32496642 DOI: 10.1002/bdr2.1712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Teratogenic potential has been linked to various industrial compounds. Methoxyacetic acid (MAA) is a primary metabolite of the widely used organic solvent and plasticizer, methoxyethanol and dimethoxyethyl phthalate, respectively. Studies using model animals have shown that MAA acts as the proximate teratogen that causes various malformations in developing embryos. Nonetheless, the molecular mechanisms by which MAA exerts its teratogenic effects are not fully understood. METHODS Gastruloids of mouse P19C5 pluripotent stem cells, which recapitulate axial elongation morphogenesis of gastrulation-stage embryos, were explored as an in vitro model to investigate the teratogenic action of MAA. Morphometric parameters of gastruloids were measured to evaluate the morphogenetic effect, and transcript levels of various developmental regulator genes were examined to assess the impact on gene expression patterns. The effects of MAA on the level of retinoic acid (RA) signaling and histone deacetylase activity were also measured. RESULTS MAA reduced axial elongation of gastruloids at concentrations comparable to the teratogenic plasma level (5 mM) in vivo. MAA at 4 mM significantly altered the expression profiles of developmental regulator genes. In particular, it upregulated the RA signaling target genes. The concomitant suppression of RA signaling using a pharmacological agent alleviated the morphogenetic effect of MAA. MAA at 4 mM also significantly reduced the activity of purified histone deacetylase protein. CONCLUSIONS MAA impaired axial elongation morphogenesis in a RA signaling-dependent manner in mouse gastruloids, possibly through the inhibition of histone deacetylase.
Collapse
Affiliation(s)
- Aileen S W Li
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, USA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, USA
| |
Collapse
|
8
|
Sargolzaei J, Rabbani-Chadegani A, Mollaei H, Deezagi A. Spectroscopic analysis of the interaction of valproic acid with histone H1 in solution and in chromatin structure. Int J Biol Macromol 2017; 99:427-432. [PMID: 28263810 DOI: 10.1016/j.ijbiomac.2017.02.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/14/2017] [Indexed: 11/25/2022]
Abstract
Histone H1 is a basic chromosomal protein which links adjacent nucleosomes in chromatin structure. Valproic acid (VPA), a histone deacetylase inhibitor, is widely used as an antiepileptic drug for the treatment of various cancers. In this study the interaction between VPA and histone H1, chromatin and DNA in solution was investigated employing spectroscopic techniques. The results showed that VPA binds cooperatively to histone H1 and chromatin but exhibited very weak interaction with DNA. The association constants demonstrated higher affinity of VPA to H1 compared to chromatin. Fluorescence emission intensity was reduced by quenching value (Ksv) of 2.3 and 0.83 for H1 and chromatin respectively. VPA also altered ellipticity of chromatin and H1 at 220nm indicating increase in α-helix content of H1/chromatin proteins suggesting that the protein moiety of chromatin is the site of VPA action. Moreover, thermal denaturation revealed hypochromicity in chromatin Tm profiles with small shift in Tm values without any significant change in DNA pattern. It is concluded that VPA, apart from histone deacetylase inhibition activity, binds strongly to histone H1 in chromatin structure, demonstrating that VPA may also exert its anticancer activity by influencing chromatin proteins which opens new insight into the mechanism of VPA action.
Collapse
Affiliation(s)
- Javad Sargolzaei
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azra Rabbani-Chadegani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Hossein Mollaei
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abdolkhalegh Deezagi
- Department of Molecular Medicine and Biochemistry, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
9
|
Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reprod Toxicol 2016; 66:68-83. [PMID: 27693483 DOI: 10.1016/j.reprotox.2016.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA), an antiepileptic drug, is a teratogen that causes neural tube and axial skeletal defects, although the mechanisms are not fully understood. We previously established a gastrulation model using mouse P19C5 stem cell embryoid bodies (EBs), which exhibits axial patterning and elongation morphogenesis in vitro. Here, we investigated the effects of VPA on the EB axial morphogenesis to gain insights into its teratogenic mechanisms. Axial elongation and patterning of EBs were inhibited by VPA at therapeutic concentrations. VPA elevated expression levels of various developmental regulators, including Cdx1 and Hoxa1, known transcriptional targets of retinoic acid (RA) signaling. Co-treatment of EBs with VPA and BMS493, an RA receptor antagonist, partially rescued axial elongation as well as gene expression profiles. These results suggest that VPA requires active RA signaling to interfere with EB morphogenesis.
Collapse
|
10
|
Rücker FG, Lang KM, Fütterer M, Komarica V, Schmid M, Döhner H, Schlenk RF, Döhner K, Knudsen S, Bullinger L. Molecular dissection of valproic acid effects in acute myeloid leukemia identifies predictive networks. Epigenetics 2016; 11:517-25. [PMID: 27309669 DOI: 10.1080/15592294.2016.1187350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) like valproic acid (VPA) display activity in leukemia models and induce tumor-selective cytotoxicity against acute myeloid leukemia (AML) blasts. As there are limited data on HDACIs effects, we aimed to dissect VPA effects in vitro using myeloid cell lines with the idea to integrate findings with in vivo data from AML patients treated with VPA additionally to intensive chemotherapy (n = 12). By gene expression profiling we identified an in vitro VPA response signature enriched for genes/pathways known to be implicated in cell cycle arrest, apoptosis, and DNA repair. Following VPA treatment in vivo, gene expression changes in AML patients showed concordant results with the in vitro VPA response despite concomitant intensive chemotherapy. Comparative miRNA profiling revealed VPA-associated miRNA expression changes likely contributing to a VPA-induced reversion of deregulated gene expression. In addition, we were able to define markers predicting VPA response in vivo such as CXCR4 and LBH. These could be validated in an independent cohort of VPA and intensive chemotherapy treated AML patients (n = 114) in which they were inversely correlated with relapse-free survival. In summary, our data provide new insights into the molecular mechanisms of VPA in myeloid blasts, which might be useful in further advancing HDAC inhibition based treatment approaches in AML.
Collapse
Affiliation(s)
- Frank G Rücker
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Katharina M Lang
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Markus Fütterer
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Vladimir Komarica
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Mathias Schmid
- b Department of Medical Oncology and Hematology , Triemli Hospital , Zurich , Switzerland
| | - Hartmut Döhner
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Richard F Schlenk
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Konstanze Döhner
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Steen Knudsen
- c Medical Prognosis Institute (MPI) , Hørsholm , Denmark
| | - Lars Bullinger
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| |
Collapse
|
11
|
El Husseini N, Schlisser AE, Hales BF. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos. Toxicol Sci 2016; 152:297-308. [PMID: 27208086 DOI: 10.1093/toxsci/kfw089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure.
Collapse
Affiliation(s)
- Nazem El Husseini
- *Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Ava E Schlisser
- *Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Barbara F Hales
- *Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
12
|
Paradis FH, Hales BF. The Effects of Class-Specific Histone Deacetylase Inhibitors on the Development of Limbs During Organogenesis. Toxicol Sci 2015; 148:220-8. [PMID: 26251326 DOI: 10.1093/toxsci/kfv174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Histone deacetylases (HDACs) play a major role in chromatin remodeling, gene regulation, and cellular signaling. While the role of each class of HDAC during normal development is unclear, several HDAC inhibitors are embryotoxic; the mechanisms leading to the teratogenicity of HDAC inhibitors are not known. Here, we investigated the effects of class-specific HDAC inhibitors on the development of organogenesis-stage murine limbs. Timed-pregnant COL2A1-ECFP, COL10A1-mCherry, and COL1A1-YFP CD1 reporter mice were euthanized on gestation day 12; embryonic forelimbs were excised and cultured in vitro for 1, 3, and 6 days in the presence or absence of MS275 (a class I HDAC inhibitor), MC1568 (a class III HDAC inhibitor), Sirtinol (a class II HDAC inhibitor), or valproic acid, our positive control. Fluorescently tagged COL2A1, COL10A1, and COL1A1 served as markers of the differentiation of proliferative chondrocytes, hypertrophic chondrocytes, and osteoblasts, respectively. MS275 and valproic acid caused a reduction in expression of all three markers, suggesting effects on both chondrogenesis and osteogenesis. MC1568 had no effect on chondrocyte markers and mildly inhibited COL1A1 expression at 6 days. Sirtinol had no effect on COL2A1 expression or chondrocyte differentiation 1 day following exposure; however, it caused a drastic regression in limb cartilage and reduced the expression of all three differentiation markers to nearly undetectable levels at 6 days. MS275 and Sirtinol caused a 2.2- and 2.7-fold increase, respectively, in cleaved-caspase 3, a marker of apoptosis, suggesting embryotoxicity. These data demonstrate that inhibition of class I or III HDACs causes severe developmental toxicity and is highly teratogenic.
Collapse
Affiliation(s)
- France-Hélène Paradis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada H3G 1Y6
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada H3G 1Y6
| |
Collapse
|