1
|
Mu K, Kitts DD. Intestinal polyphenol antioxidant activity involves redox signaling mechanisms facilitated by aquaporin activity. Redox Biol 2023; 68:102948. [PMID: 37922763 PMCID: PMC10643476 DOI: 10.1016/j.redox.2023.102948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Ascertaining whether dietary polyphenols evoke an antioxidant or prooxidant activity, which translates to a functional role required to maintain intestinal cell homeostasis continues to be an active and controversial area of research for food chemists and biochemists alike. We have proposed that the paradoxical function of polyphenols to autoxidize to generate H2O2 is a required first step in the capacity of some plant phenolics to function as intracellular antioxidants. This is based on the fact that cell redox homeostasis is achieved by a balance between H2O2 formation and subsequent outcomes of antioxidant systems function. Maintaining optimal extracellular and intracellular H2O2 concentrations is required for cell survival, since low levels are important to upregulate endogenous antioxidant capacity; whereas, concentrations that go beyond homeostatic control typically result in an inflammatory response, growth arrest, or eventual cell death. Aquaporins (AQPs) are a family of water channel membrane proteins that facilitate cellular transportation of water and other small molecule-derived solutes, such as H2O2, in all organisms. In the intestine, AQPs act as gatekeepers to regulate intracellular uptake of H2O2, generated from extracellular polyphenol autoxidation, thus enabling an intracellular cell signaling responses to mitigate onset of oxidative stress and intestinal inflammation. In this review, we highlight the potential role of AQPs to control important underlying mechanisms that define downstream regulation of intestinal redox homeostasis, specifically. It has been established that polyphenols that undergo oxidation to the quinone form, resulting in subsequent adduction to a thiol group on Keap1-Nrf2 complex, trigger Nrf2 activation and a cascade of indirect intracellular antioxidant effects. Here, we propose a similar mechanism that involves H2O2 generated from specific dietary polyphenols with a predisposition to undergo autoxidation. The ultimate bioactivity is regulated and expressed by AQP membrane function and thus, by extension, represents expression of an intracellular antioxidant chemoprotection mechanism.
Collapse
Affiliation(s)
- Kaiwen Mu
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food System, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada
| | - David D Kitts
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food System, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada.
| |
Collapse
|
2
|
Toropova AP. Medicinal Chemistry and Computational Chemistry: Mutual Influence and Harmonization. Mini Rev Med Chem 2020; 20:1320-1321. [PMID: 32600227 DOI: 10.2174/138955752014200626163614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
3
|
Molecular Mechanisms That Define Redox Balance Function in Pathogen-Host Interactions-Is There a Role for Dietary Bioactive Polyphenols? Int J Mol Sci 2019; 20:ijms20246222. [PMID: 31835548 PMCID: PMC6940965 DOI: 10.3390/ijms20246222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
To ensure a functional immune system, the mammalian host must detect and respond to the presence of pathogenic bacteria during infection. This is accomplished in part by generating reactive oxygen species (ROS) that target invading bacteria; a process that is facilitated by NADPH oxidase upregulation. Thus, bacterial pathogens must overcome the oxidative burst produced by the host innate immune cells in order to survive and proliferate. In this way, pathogenic bacteria develop virulence, which is related to the affinity to secrete effector proteins against host ROS in order to facilitate microbial survival in the host cell. These effectors scavenge the host generated ROS directly, or alternatively, manipulate host cell signaling mechanisms designed to benefit pathogen survival. The redox-balance of the host is important for the regulation of cell signaling activities that include mitogen-activated protein kinase (MAPK), p21-activated kinase (PAK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) pathways. An understanding of the function of pathogenic effectors to divert host cell signaling is important to ascertain the mechanisms underlying pathogen virulence and the eventual host–pathogen relationship. Herein, we examine the effectors produced by the microbial secretion system, placing emphasis on how they target molecular signaling mechanisms involved in a host immune response. Moreover, we discuss the potential impact of bioactive polyphenols in modulating these molecular interactions that will ultimately influence pathogen virulence.
Collapse
|
4
|
Sepsis-Induced Cardiomyopathy: Oxidative Implications in the Initiation and Resolution of the Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7393525. [PMID: 29057035 PMCID: PMC5625757 DOI: 10.1155/2017/7393525] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Cardiac dysfunction may complicate the course of severe sepsis and septic shock with significant implications for patient's survival. The basic pathophysiologic mechanisms leading to septic cardiomyopathy have not been fully clarified until now. Disease-specific treatment is lacking, and care is still based on supportive modalities. Septic state causes destruction of redox balance in many cell types, cardiomyocytes included. The production of reactive oxygen and nitrogen species is increased, and natural antioxidant systems fail to counterbalance the overwhelming generation of free radicals. Reactive species interfere with many basic cell functions, mainly through destruction of protein, lipid, and nucleic acid integrity, compromising enzyme function, mitochondrial structure and performance, and intracellular signaling, all leading to cardiac contractile failure. Takotsubo cardiomyopathy may result from oxidative imbalance. This review will address the multiple aspects of cardiomyocyte bioenergetic failure in sepsis and discuss potential therapeutic interventions.
Collapse
|
5
|
Doyon P, Johansson O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med Hypotheses 2017; 106:71-87. [PMID: 28818275 DOI: 10.1016/j.mehy.2017.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
|
6
|
Altun G, Kaplan S, Deniz OG, Kocacan SE, Canan S, Davis D, Marangoz C. Protective effects of melatonin and omega-3 on the hippocampus and the cerebellum of adult Wistar albino rats exposed to electromagnetic fields. J Microsc Ultrastruct 2017; 5:230-241. [PMID: 30023259 PMCID: PMC6025784 DOI: 10.1016/j.jmau.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
The purpose of the study was to investigate the effects of pulsed digital electromagnetic radiation emitted by mobile phones on the central nervous system of the adult Wistar albino rats. The study evaluated structural and functional impacts of four treatment arms: electromagnetic field (EMF) exposed; EMF exposed + melatonin treated group (EMF + Mel); EMF exposed + omega-3 (ω3) treated group (EMF + ω3); and control group (Cont). The 12-weeks-old rats were exposed to 900 MHz EMF for 60 min/day (4:00–5:00 p.m.) for 15 days. Stereological, biochemical and electrophysiological techniques were applied to evaluate protective effects of Mel and ω3. Significant cell loss in the CA1 and CA2 regions of hippocampus were observed in the EMF compared to other groups (p < 0.01). In the CA3 region of the EMF + ω3, a significant cell increase was found compared to other groups (p < 0.01). Granular cell loss was observed in the dentate gyrus of the EMF compared to the Cont (p < 0.01). EMF + ω3 has more granular cells in the cerebellum than the Cont, EMF + Mel (p < 0.01). Significant Purkinje cell loss was found in the cerebellum of EMF group compared to the other (p < 0.01). EMF + Mel and EMF + ω3 showed the same protection compared to the Cont (p > 0.05). The passive avoidance test showed that entrance latency into the dark compartment was significantly shorter in the EMF (p < 0.05). Additionally, EMF had a higher serum enzyme activity than the other groups (p < 0.01). In conclusion, our analyses confirm that EMF may lead to cellular damage in the hippocampus and the cerebellum, and that Mel and ω3 may have neuroprotective effects.
Collapse
Affiliation(s)
- Gamze Altun
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
- Corresponding author. E-mail address: (G. Altun)
| | - Suleyman Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Omur Gulsum Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Sinan Canan
- Department of Psychology, Üsküdar University, Istanbul, Turkey
| | - Devra Davis
- Department of Medicine and Public Health, The Hebrew University, Jerusalem, Israel
- Environmental Health Trust, Teton Village, WY, USA
| | - Cafer Marangoz
- Department of Physiology, Medical Faculty, Medipol University, Istanbul, Turkey
| |
Collapse
|
7
|
Strojny B, Kurantowicz N, Sawosz E, Grodzik M, Jaworski S, Kutwin M, Wierzbicki M, Hotowy A, Lipińska L, Chwalibog A. Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats. PLoS One 2015; 10:e0144821. [PMID: 26657282 PMCID: PMC4681315 DOI: 10.1371/journal.pone.0144821] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022] Open
Abstract
Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects.
Collapse
Affiliation(s)
- Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Natalia Kurantowicz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Hotowy
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ludwika Lipińska
- Department of Chemical Technologies, Institute of Electronic Materials Technology, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
8
|
Tripathy S, Roy S. Redox sensing and signaling by malaria parasite in vertebrate host. J Basic Microbiol 2015; 55:1053-63. [PMID: 25740654 DOI: 10.1002/jobm.201500031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/12/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Satyajit Tripathy
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore West Bengal India
| | - Somenath Roy
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore West Bengal India
| |
Collapse
|
9
|
Kovacic P, Ott N, Cooksy AL. Benzodiazepines: electron affinity, receptors and cell signaling - a multifaceted approach. J Recept Signal Transduct Res 2013; 33:338-43. [PMID: 23971627 DOI: 10.3109/10799893.2013.830129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This report entails a multifaceted approach to benzodiazepine (BZ) action, involving electron affinity, receptors, cell signaling and other aspects. Computations of the electron affinities (EAs) of different BZs have been carried out to establish the effect of various substituents on their EA. These computations were undertaken to serve as a first step in determining what role electron transfer (ET) plays in BZ activity. The calculations were conducted on the premise that the nature of the substituent will either decrease or increase the electron density of the benzene ring, thus altering the ability of the molecule to accept an electron. Investigations were performed on the effect of drug protonation on EA. Similarities involving substituent effects in prior electrochemical studies are also discussed. As part of the multifaceted approach, EA is linked to ET, which appears to play a role in therapeutic activity and toxicity. There is extensive literature dealing with the role of receptors in BZ activity. Significant information on receptor involvement was reported more than 40 years ago. Gamma-aminobutyric acid (GABA) is known to be importantly involved. GABA is a probable mediator of BZ effects. BZ and GABA receptors, although not identical, are physiologically linked. Cell signaling is known to play a part in the biochemistry of BZ action. Various factors participated, such as gene expression, allosteric influence, toxic effects and therapeutic action. Evidence points to involvement of EA and ET in the mode of action in cell signaling. Oxidative stress and antioxidant effects are also addressed.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University , San Diego, CA , USA
| | | | | |
Collapse
|
10
|
Kovacic P, Somanathan R. Cell signaling, receptors, electrical effects and therapy in circadian rhythm. J Recept Signal Transduct Res 2013; 33:267-75. [PMID: 23914781 DOI: 10.3109/10799893.2013.822890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian rhythm has been the object of much attention. This review addresses the aspects of cell signaling, receptors, therapy and electrical effects in a multifaceted fashion. The pineal gland, which produces the important hormones melatonin and serotonin, exerts a prominent influence, in addition to the supraschiasmatic nucleus. Many aspects involve free radicals which have played a widespread role in biochemistry.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego , CA , USA and
| | | |
Collapse
|
11
|
Kovacic P, Somanathan R. Cell signaling and receptors in toxicity of advanced glycation end products (AGEs): α-dicarbonyls, radicals, oxidative stress and antioxidants. J Recept Signal Transduct Res 2012; 31:332-9. [PMID: 21929288 DOI: 10.3109/10799893.2011.607171] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Considerable attention has been paid to the toxicity of advanced glycation end products (AGEs), including relation to various illnesses. AGEs, generated nonenzymatically from carbohydrates and proteins, comprises large numbers of simple and more complicated compounds. Many reports deal with a role for receptors (RAGE) and cell signaling, including illnesses and aging. Reactive oxygen species appear to participate in signaling. RAGE include angiotensin II type 1 receptors. Many signaling pathways are involved, such as kinases, p38, p21, TGF-β, NF-κβ, TNF-α, JNK and STAT. A recent review puts focus on α-dicarbonyl metabolites, formed by carbohydrate oxidation, and imine derivatives from protein condensation, as a source via electron transfer (ET) of ROS and oxidative stress (OS). The toxic species have been related to illnesses and aging. Antioxidants alleviate the adverse effects.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | | |
Collapse
|
12
|
Braga PC, Dal Sasso M, Culici M, Falchi M, Spallino A, Nappi G. Free radical-scavenging activity of sulfurous water investigated by electron paramagnetic resonance (EPR) spectroscopy. Exp Lung Res 2011; 38:67-74. [PMID: 22185392 DOI: 10.3109/01902148.2011.641668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of the study was to explore the antiradical activity of sulfurous water, used for inhalatory therapy (characterized by the presence of sulfhydryl [HS]) by means of electron paramagnetic resonance (EPR) spectroscopy. The effects of sulfurous water corresponding to the concentrations from 16 down to 0.25 μg/mL of HS were tested by means of Fenton reaction (HO•), KO2-crown ether system (O2-•), and EPR of Tempol and of Fremy's salt radical. All of these assays were made using natural sulfurous water or degassed sulfurous water (no detectable HS) or reconstituted sulfurous water (degassed plus NaHS). The free radicals were significantly inhibited by natural water with HS concentrations ranging from 16 to 1 μg/mL for HO•, Tempol, and Fremy's salt, and O2-• was significantly inhibited from 16 and 2 μg/mL. The tests of degassed water did not reveal any significant differences from baseline values. The tests of reconstituted water led to significant results overlapping those obtained using natural water, thus confirming the importance of the presence of HS group (reductive activity). The positive effects of the activity of sulfurous thermal water is partially based on the patients' subjective sense of well-being and partially on symptomatic (or general) clinical improvements that are sometimes difficult to quantify. These findings indicate that, in addition to their known mucolytic activity and trophic effects on respiratory mucosa, the HS groups in sulfurous water also have antioxidant activity that contributes to the water's therapeutic effects on upper and lower airway inflammatory diseases.
Collapse
Affiliation(s)
- Pier Carlo Braga
- Center of Respiratory Pharmacology, Department of Pharmacology, School of Medicine, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Kovacic P. Novel electrostatic mechanism for mode of action by N-acetylated proteins: cell signaling and phosphorylation. J Recept Signal Transduct Res 2011; 31:193-8. [PMID: 21619447 DOI: 10.3109/10799893.2011.577784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although extensive literature exists for N-acetylated proteins, scant knowledge is available concerning resultant mode of action. This review presents a novel mechanism based on electrostatics and cell signaling. There is substantial increase in the amide dipole and electrostatic field (EF) in contrast with the primary amino of the lysine precursor. The EF might serve as a bridge in electron transfer and cell signaling or energetics may play a role. The relationship between N-acetylation and phosphorylation is addressed. EFs may be important in the case of phosphates. Involvement of cell signaling is addressed including mechanistic aspects. As is the case for many aspects of bioaction, an integrated approach involving electrochemistry and cell signaling seems reasonable.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
14
|
Kovacic P, Somanathan R. Cell signaling and receptors with resorcinols and flavonoids: redox, reactive oxygen species, and physiological effects. J Recept Signal Transduct Res 2011; 31:265-70. [DOI: 10.3109/10799893.2011.586353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Kovacic P, Somanathan R. Integrated approach to nitric oxide in animals and plants (mechanism and bioactivity): cell signaling and radicals. J Recept Signal Transduct Res 2011; 31:111-20. [DOI: 10.3109/10799893.2010.544317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kovacic P, Somanathan R. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:52-7. [PMID: 20046645 PMCID: PMC2763231 DOI: 10.4161/oxim.2.1.7859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/06/2009] [Accepted: 01/16/2009] [Indexed: 01/22/2023]
Abstract
Zolpidem (trade name Ambien) has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET), pharmacodynamics, structure activity relationships (SAR) and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action. The pyridinium cation displays molecular electrostatic potential which may well play a role energetically or as a bridging mechanism. An SAR analysis points to analogy with other physiologically active xenobiotics, namely benzodiazepines and paraquat in the conjugated iminium category. Inactivity of metabolites indicates that the parent is the active form of zolpidem. Absence of reactive oxygen species and oxidative stress is in line with minor side effects. In contrast, generally, the prior literature contains essentially no discussion of these fundamental biochemical relationships. Pharmacodynamics may play an important role. Concerning behavior at the blood-brain barrier, useful insight can be gained from investigations of the related cationic anesthetics that are structurally related to acetyl choline. Evidently, the neutral form of the drug penetrates the neuronal membrane, with the salt form operating at the receptor. The pathways of zolpidem have several clinical implications since the agent affects sedation, electroencephalographic activity, oxidative metabolites and receptors in the central nervous system. The drug acts at the GABA(A) receptor benzodiazepine site, displaying high and intermediate affinities to various receptor regions. Structural features for tight binding were determined. The sedative and anticonvulsant activities are due to its action on the alpha-1-GABA(A) receptors. One of the common adverse responses to zolpidem is hallucinations. Proposed mechanisms comprise changes in the GABA(A) receptor, pharmacodynamic interactions involving serotonin and neuronal-weak photon emission processes entailing redox phenomena. Reports cite cases of abuse with cravings based on anxiolytic and stimulating actions. It is important to recognize that insight concerning processes at the fundamental, molecular level can translate into beneficial results involving both positive and adverse side effects. In order for this to occur, interdisciplinary interaction is necessary. Suggestions are made for future research aimed at testing the various hypotheses.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| | | |
Collapse
|
17
|
Kovacic P, Somanathan R. Novel, unifying mechanism for mescaline in the central nervous system: electrochemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:181-90. [PMID: 20716904 PMCID: PMC2763256 DOI: 10.4161/oxim.2.4.9380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A unifying mechanism for abused drugs has been proposed previously from the standpoint of electron transfer. Mescaline can be accommodated within the theoretical framework based on redox cycling by the catechol metabolite with its quinone counterpart. Electron transfer may play a role in electrical effects involving the nervous system in the brain. This approach is in accord with structure activity relationships involving mescaline, abused drugs, catecholamines and etoposide. Inefficient demethylation is in keeping with the various drug properties, such as requirement for high dosage and slow acting. There is a discussion of receptor binding, electrical effects, cell signaling and other modes of action. Mescaline is a nonselective, seretonin receptor agonist. 5-HTP receptors are involved in the stimulus properties. Research addresses the aspect of stereochemical requirements. Receptor binding may involve the proposed quinone metabolite and/or the amino sidechain via protonation. Electroencephalographic studies were performed on the effects of mescaline on men. Spikes are elicited by stimulation of a cortical area. The potentials likely originate in nonsynaptic dendritic membranes. Receptor-mediated signaling pathways were examined which affect mescaline behavior. The hallucinogen belongs to the class of 2AR agonists which regulate pathways in cortical neurons. The research identifies neural and signaling mechanisms responsible for the biological effects. Recently, another hallucinogen, psilocybin, has been included within the unifying mechanistic framework. This mushroom constituent is hydrolyzed to the phenol psilocin, also active, which is subsequently oxidized to an ET o-quinone or iminoquinone.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182, USA.
| | | |
Collapse
|
18
|
Kovacic P. Hydroxyurea (therapeutics and mechanism): Metabolism, carbamoyl nitroso, nitroxyl, radicals, cell signaling and clinical applications. Med Hypotheses 2011; 76:24-31. [DOI: 10.1016/j.mehy.2010.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/03/2010] [Accepted: 08/08/2010] [Indexed: 10/19/2022]
|
19
|
Kovacic P, Somanathan R. Multifaceted approach to resveratrol bioactivity: Focus on antioxidant action, cell signaling and safety. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:86-100. [PMID: 20716933 DOI: 10.4161/oxim.3.2.11147] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol (RVT) is a naturally occurring trihydroxy stilbene that displays a wide spectrum of physiological activity. Its ability to behave therapeutically as a component of red wine has attracted wide attention. The phenol acts as a protective agent involving various body constituents. Most attention has been given to beneficial effects in insults involving cancer, aging, cardiovascular system, inflammation and the central nervous system. One of the principal modes of action appears to be as antioxidant. Other mechanistic pathways entail cell signaling, apoptosis and gene expression. There is an intriguing dichotomy in relation to pro-oxidant property. Also discussed are metabolism, receptor binding, rationale for safety and suggestions for future work. This is the first comprehensive review of RVT based on a broad, unifying mechanism.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA, USA.
| | | |
Collapse
|
20
|
|
21
|
Kovacic P, Edwards CL. Hydroxamic acids (therapeutics and mechanism): chemistry, acyl nitroso, nitroxyl, reactive oxygen species, and cell signaling. J Recept Signal Transduct Res 2010; 31:10-9. [PMID: 20590405 DOI: 10.3109/10799893.2010.497152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Kovacic P, Somanathan R. Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res 2010; 30:214-26. [DOI: 10.3109/10799893.2010.488650] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Kovacic P. Simplifying the complexity of cell signaling in medicine and the life sciences: Radicals and electrochemistry. Med Hypotheses 2010; 74:769-71. [DOI: 10.1016/j.mehy.2009.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 12/24/2022]
|
24
|
Kovacic P. How safe is bisphenol A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress. Med Hypotheses 2010; 75:1-4. [PMID: 20371154 DOI: 10.1016/j.mehy.2010.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 11/18/2022]
Abstract
The FDA recently announced concern about the safety of bisphenol A (BPA) and the need for more research. In the current controversy, scant attention is being paid to toxicity at the fundamental, molecular level, which is the topic of this report. Important information is provided by extensive studies on metabolism. The principal pathway is detoxification, mainly by conjugation leading to a glucuronide. A minor route entails oxidation by hydroxylation to a catechol followed by further transformation to an o-quinone. The catechol-o-quinone couple is capable of redox cycling with generation of reactive oxygen species (ROS) and oxidative stress (OS). o-Quinones are highly electron affinic with very favorable reduction potentials that permit electron transfer (ET) under physiological conditions. Only small amounts are sufficient to generate large quantities of ROS catalytically. There is extensive evidence for production of ROS, which buttresses ET by o-quinone as a plausible source. In addition, there are numerous reports on toxicity to body constituents by BPA. Those adversely affected include the liver, DNA, genes, CNS, reproductive system and kidney. Since a plethora of prior studies links ROS-OS with toxicity, it is reasonable to propose a similar connection for BPA. Cell signaling also plays a role. There are various other factors involved with toxic responses, including age, with the fetus and infants being the most vulnerable. A report concludes that human exposure to BPA is not negligible. The present overview represents a novel, integrated approach to BPA toxicity. A similar article was recently published in this journal which deals with toxicity of prevalent phthalate plasticizers.
Collapse
|
25
|
How dangerous are phthalate plasticizers? Integrated approach to toxicity based on metabolism, electron transfer, reactive oxygen species and cell signaling. Med Hypotheses 2010; 74:626-8. [DOI: 10.1016/j.mehy.2009.11.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 02/07/2023]
|
26
|
Kovacic P, Edwards C. Integrated approach to the mechanisms of thyroid toxins: electron transfer, reactive oxygen species, oxidative stress, cell signaling, receptors, and antioxidants. J Recept Signal Transduct Res 2010; 30:133-42. [DOI: 10.3109/10799891003702678] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Kovacic P, Hall ME. Bioelectrochemistry, reactive oxygen species, receptors, and cell signaling: how interrelated? J Recept Signal Transduct Res 2010; 30:1-9. [DOI: 10.3109/10799890903517939] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Kovacic P, Somanathan R. Unifying mechanism for metals in toxicity, carcinogenicity and therapeutic action: integrated approach involving electron transfer, oxidative stress, antioxidants, cell signaling and receptors. J Recept Signal Transduct Res 2010; 30:51-60. [DOI: 10.3109/10799890903582578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Kovacic P, Somanathan R. Dermal toxicity and environmental contamination: electron transfer, reactive oxygen species, oxidative stress, cell signaling, and protection by antioxidants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 203:119-138. [PMID: 19957119 DOI: 10.1007/978-1-4419-1352-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Large numbers of chemicals are known to produce diverse types of skin injury, and these substances fit into a wide variety of both organic and inorganic chemical classes. Skin contact with toxins is difficult to avoid, because they are widely distributed, e.g., in industrial substances, agricultural chemicals, household products, and plants. Although various hypotheses have been advanced, there is no universal agreement as to how dermal toxins act to produce their effects. In this review, we provide evidence and numerous literature citations to support the view that oxidative stress (OS) and electron transfer (ET) comprise a portion of a key mechanism, and perhaps unifying theme that underlie the action of dermatotoxins. We apply the concept that ET and OS are key elements in the induction of dermatotoxic effects to all of the main classes of toxins, and to other toxins, as well. We believe it is not coincidental that the vast majority of dermatotoxic substances incorporate recurrent ET chemical functionalities (i.e., quinone, metal complexes, ArNO2, or conjugated iminium), either per se or as metabolites; such entities potentially give rise to reactive oxygen species (ROS) by redox cycling. However, in some categories, wherein agents cause dermal damage, e.g., peroxides and radiation, it appears that ROS are generated by non-ET routes. As expected, if ET and oxidative process do constitute the mechanistic framework by which most dermal toxins act, then antioxidants (AOs), if present, should prevent or mitigate effects. This is exactly what has been discovered to occur. Because ET and OS either cause or contribute to dermal toxicity, and AOs may offer protection therefrom, policy makers and researchers may be better positioned to prevent human dermatotoxicity.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
30
|
Wells PG, Lee CJJ, McCallum GP, Perstin J, Harper PA. Receptor- and reactive intermediate-mediated mechanisms of teratogenesis. Handb Exp Pharmacol 2010:131-162. [PMID: 20020262 DOI: 10.1007/978-3-642-00663-0_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Drugs and environmental chemicals can adversely alter the development of the fetus at critical periods during pregnancy, resulting in death, or in structural and functional birth defects in the surviving offspring. This process of teratogenesis may not be evident until a decade or more after birth. Postnatal functional abnormalities include deficits in brain function, a variety of metabolic diseases, and cancer. Due to the high degree of fetal cellular division and differentiation, and to differences from the adult in many biochemical pathways, the fetus is highly susceptible to teratogens, typically at low exposure levels that do not harm the mother. Insights into the mechanisms of teratogenesis come primarily from animal models and in vitro systems, and involve either receptor-mediated or reactive intermediate-mediated processes. Receptor-mediated mechanisms involving the reversible binding of xenobiotic substrates to a specific receptor are exemplified herein by the interaction of the environmental chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or "dioxin") with the cytosolic aryl hydrocarbon receptor (AHR), which translocates to the nucleus and, in association with other proteins, binds to AH-responsive elements (AHREs) in numerous genes, initiating changes in gene transcription that can perturb development. Alternatively, many xenobiotics are bioactivated by fetal enzymes like the cytochromes P450 (CYPs) and prostaglandin H synthases (PHSs) to highly unstable electrophilic or free radical reactive intermediates. Electrophilic reactive intermediates can covalently (irreversibly) bind to and alter the function of essential cellular macromolecules (proteins, DNA), causing developmental anomalies. Free radical reactive intermediates can enhance the formation of reactive oxygen species (ROS), resulting in oxidative damage to cellular macromolecules and/or altered signal transduction. The teratogenicity of reactive intermediates is determined to a large extent by the balance among embryonic and fetal pathways of xenobiotic bioactivation, detoxification of the xenobiotic reactive intermediate, detoxification of ROS, and repair of oxidative macromolecular damage.
Collapse
Affiliation(s)
- Peter G Wells
- Division of Biomolecular Sciences, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
31
|
Kovacic P, Cooksy AL. Electron transfer as a potential cause of diacetyl toxicity in popcorn lung disease. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 204:133-148. [PMID: 19957235 DOI: 10.1007/978-1-4419-1440-8_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Diacetyl, a butter-flavoring component, has recently attracted scientific and media attention because it has been implicated as an agent that induces popcorn lung disease in exposed plant workers. This disease, officially referred to as bronchiolitis obliterans, entails exposure-induced compromise to the lung's epithelial barrier function. In this review, we present a novel molecular mechanism (electron transfer, ET) designed to explain how diacetyl and its imine derivatives might interact to produce lung damage. We relate the fact that diacetyl and related compounds possess reduction potentials amenable to electron transfer (ET) in vivo. The electrochemical nature of these toxicants can potentially disrupt normal ET processes, generate reactive oxygen species (ROS), and participate in cell signaling events. Condensation of diacetyl with protein may also play a role in the toxicity caused by this compound. ET is a common feature of toxic substances, usually involving their metabolites which can operate per se or through reactions that generate ROS and oxidative stress (OS). Examples of agents capable of ET are quinone and metal compounds, aromatic nitro compounds, and iminium salts. Among compounds that generate ET, the alpha-dicarbonyl ET class, of which diacetyl is a member, is much less studied. This review emphasizes diacetyl as an agent that acts through oxidative processes to cause its effects. However, we also treat related substances that appear to act by a similar mechanism. This mechanism forms a theoretical framework capable of describing the mechanism by which diacetyl may induce its effects and is in accord with various physiological activities displayed by other alpha-dicarbonyl substances. Examples of substances that may act by mechanisms similar to that displayed by diacetyl include cyclohexane-1,2-dione, marinopyrroles, reactive carbonyl species, the bacterial signaling agent DPD, and advanced glycation end products.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
32
|
Kovacic P, Somanathan R. Integrated approach to immunotoxicity: electron transfer, reactive oxygen species, antioxidants, cell signaling, and receptors. J Recept Signal Transduct Res 2009; 28:323-46. [PMID: 18702007 DOI: 10.1080/10799890802305217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As with all body organs, the immune system is subjected to attack by a variety of toxins. Serious consequences can result because the immune organs serve as a defense against infective agents. The toxins, both organic and inorganic, fall into a large variety of classes, such as metals, therapeutic drugs, industrial chemicals, pollutants, pesticides, fuels, herbicides and abused drugs. Although the mode of action is multifaceted, our focus is on electron transfer (ET), reactive oxygen species (ROS), antioxidants (AOs), cell signaling, and receptors. It is significant that the toxins or their metabolites incorporate ET functionalities capable of redox cycling with resultant generation of ROS and accompanying oxidative stress.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
33
|
Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJJ, Perstin J, Preston TJ, Wiley MJ, Wong AW. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009; 108:4-18. [PMID: 19126598 DOI: 10.1093/toxsci/kfn263] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the developing embryo and fetus, endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS) like hydroxyl radicals may adversely alter development by oxidatively damaging cellular lipids, proteins and DNA, and/or by altering signal transduction. The postnatal consequences may include an array of birth defects (teratogenesis), postnatal functional deficits, and diseases. In animal models, the adverse developmental consequences of in utero exposure to agents like thalidomide, methamphetamine, phenytoin, benzo[a]pyrene, and ionizing radiation can be modulated by altering pathways that control the embryonic ROS balance, including enzymes that bioactivate endogenous substrates and xenobiotics to free radical intermediates, antioxidative enzymes that detoxify ROS, and enzymes that repair oxidative DNA damage. ROS-mediated signaling via Ras, nuclear factor kappa B and related transducers also may contribute to altered development. Embryopathies can be reduced by free radical spin trapping agents and antioxidants, and enhanced by glutathione depletion. Further modulatory approaches to evaluate such mechanisms in vivo and/or in embryo culture have included the use of knockout mice, transgenic knock-ins and mutant deficient mice with altered enzyme activities, as well as antisense oligonucleotides, protein therapy with antioxidative enzymes, dietary depletion of essential cofactors and chemical enzyme inhibitors. In a few cases, measures anticipated to be protective have conversely enhanced the risk of adverse developmental outcomes, indicating the complexity of development and need for caution in testing therapeutic strategies in humans. A better understanding of the developmental effects of ROS may provide insights for risk assessment and the reduction of adverse postnatal consequences.
Collapse
Affiliation(s)
- Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kovacic P, Somanathan R. Pulmonary toxicity and environmental contamination: radicals, electron transfer, and protection by antioxidants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 201:41-69. [PMID: 19484588 DOI: 10.1007/978-1-4419-0032-6_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The atmosphere is replete with a mixture of toxic substances, both natural and man-made. Inhalation of toxic substances produces a variety of insults to the pulmonary system. Lung poisons include industrial materials, particulates from mining and combustion, agricultural chemicals, cigarette smoke, ozone, and nitrogen oxides, among a large number of other chemicals and environmental contaminants. Many proposals have been advanced to explain the mode of action of pulmonary toxicants. In this review we focus on mechanisms of pulmonary toxicity that involve ET, ROS, and OS. The vast majority of toxicants or their metabolites possess chemical ET functionalities that can undergo redox cycling. Such recycling may generate ROS that can injure various cellular constituents in the lung and in other tissues. ET agents include quinones, metal complexes, aromatic nitro compounds, and conjugated iminium ions. Often, these agents are formed metabolically from parent toxicants. Such metabolic reactions are often catalytic and require only small amounts of the offending material. Oxidative attack is commonly associated with lipid peroxidation and oxidation of DNA, and it may result in strand cleavage and 8-OH-DG production. Toxicity is often accompanied by depletion of natural AOs, which further exacerbates the toxic effect. It is not surprising that the use of AOs, both natural in fruits and vegetables, as well as synthetic, may provide protection from the adverse effects of toxicant exposure. The mechanistic framework described earlier is also applicable to some of the more prominent pulmonary illnesses, such as asthma, COPD, and cancer.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
35
|
Kovacic P, Pozos RS. Bioelectronome. Integrated Approach to Receptor Chemistry, Radicals, Electrochemistry, Cell Signaling, and Physiological Effects Based on Electron Transfer. J Recept Signal Transduct Res 2008; 27:261-94. [PMID: 17885922 DOI: 10.1080/10799890701509133] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioelectronome refers to the host of electron transfer (ET) reactions that occur in living systems. This review presents an integrated approach to receptor chemistry based on electron transfer, radicals, electrochemistry, cell signaling, and end result. First, receptor activity is addressed from the unifying standpoint of redox transformations in which various receptors are discussed. After a listing of receptor-binding modes, receptor chemistry is treated with focus on generation of reactive oxygen species (ROS), activation by ROS, and subsequent cell signaling involving ROS. A general electrostatic mechanism is proposed for receptor-ligand action with supporting evidence. Cell-signaling processes appear to entail electron transfer, ROS, redox chains, and relays. The widespread involvement of phosphate from phosphorylation may be rationalized electrostatically by analogy with DNA phosphate. Extensive evidence supports important participation of ET functionalities in the mechanism of drugs and toxins. The integrated approach is applied to the main ET classes, namely, quinones, metal complexes, iminium species, and aromatic nitro compounds.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182, USA.
| | | |
Collapse
|
36
|
Kovacic P. Unifying electrostatic mechanism for metal cations in receptors and cell signaling. J Recept Signal Transduct Res 2008; 28:153-61. [PMID: 18569523 DOI: 10.1080/10799890802084234] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previously, an electrostatic mechanism was proposed for receptor-ligand action and for cell signaling by phosphate and sulfate. The hypothesis is further elaborated by application to metal ions, mainly calcium, magnesium, zinc, iron, and copper, in receptors and cell signaling. Evidence is provided for involvement of electrostatics in various reaction modes in biosystems. Calcium plays an important role electrochemically in neurotransmission. In some cases, electron transfer and redox processes are also involved. Electrostatics are known to participate in plant biochemistry. Mechanistically, the electrostatic field may act as a conduit for electrons and radicals and in involvement with energetics.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| |
Collapse
|
37
|
Kovacic P. Does structural commonality of metal complex formation by PAC-1 (anticancer), DHBNH (anti-HIV), AHL (autoinducer), and UCS1025A (anticancer) denote mechanistic similarity? Signal transduction and medical aspects. J Recept Signal Transduct Res 2008; 28:141-52. [PMID: 18569522 DOI: 10.1080/10799890802084077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is an urgent need of novel approaches to drugs in the cancer, HIV, and bacterial areas. Increasing resistance to conventional therapies is observed. This minireview provides novel insights for drugs in these three areas. The agents PAC-1 (anticancer), DHBNH (anti-HIV), AHL (autoinducer), and UCS1025A (anticancer) have recently attracted attention due to considerable potential based on new approaches. PAC-1 activates procaspase-3 to caspase-3, resulting in induction of apoptosis in tumor cells. DHBNH binds to a newly revealed site on HIV reverse transcriptase. The drug mainly inhibits RNase H (RNA-cleaving). AHLs comprise an important class that participates in bacterial cell communication. UCS1025A is a fungus-derived inhibitor of the enzyme telomerase, present in cancer cells, which is crucially involved in tumor cell immortality. All four agents possess chelating sites for metal binding, which has not been appreciated. In PAC-1 and DHBNH, the coordinating portion is similar to salicylaldehyde semicarbazone. For AHL and UCS1025A, the metal-binding moiety is a beta -ketoamide. Metal complexes of heavier metals are well-known electron transfer (ET) functionalities that can generate reactive oxygen species. Hence, it is reasonable to hypothesize a commonality in mechanism based on metal ET. Differences in receptor binding can result, in part, in diverse physiological responses. There is considerable literature that addresses involvement of signal transduction with the various physiologically active agents discussed herein. Thus, cell communication appears to play an important role in the biochemistry of these endogenous and exogenous substances. Details of cell signaling are presented for complexes of metals (Fe, Cu, Ni, and As), telomerase, caspase-3, and RNase. In addition, practical medical aspects are discussed.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| |
Collapse
|
38
|
Kovacic P, Pozos RS, Draskovich CD. Unifying electrostatic mechanism for receptor-ligand activity. J Recept Signal Transduct Res 2008; 27:411-31. [PMID: 18097940 DOI: 10.1080/10799890701699686] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A prior article in skeletal form proposed an electrostatic mechanism for receptor-ligand activity. The present review provides an elaboration, including supporting evidence. The fundamental aspect entails the presence of molecular electrostatic potential associated with ions and dipoles in the ligand. The ligand can be regarded as an electrical link that joins prevalent electrostatic fields present in the surrounding protein matrix. The exact role of these fields is speculative. One possibility is to function as conduits for electrons and radicals in cell signaling. There is increasing support for important participation of these species in signal transduction. There might also be a favorable influence on energetics involving the electron transfer process. A summary of receptor biology is also provided, including receptors for acetylcholine (nicotinic and muscarinic), GABA, adrenergic, and glutamate.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 921812, USA.
| | | | | |
Collapse
|
39
|
Kovacic P, Draskovich CD, Pozos RS. Unifying electrostatic mechanism for phosphates and sulfates in cell signaling. J Recept Signal Transduct Res 2008; 27:433-43. [PMID: 18097941 DOI: 10.1080/10799890701699702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Prior proposals suggested the importance of electrochemistry in signal transduction and receptor-ligand activity. Electrostatic fields associated with ions and dipoles were assigned important roles. Little is known concerning the precise mode of action in cell signaling by widespread phosphorylation. According to the hypothetical framework, molecular electrostatic potential associated with phosphate anion is a key element as a link in the communication grid, possibly inducing favorable energetics in the electron transfer process. Similar involvement appears plausible for the sulfate anion. Supporting evidence for the electrostatic mechanism is presented. Representative literature on phosphorylation in the biological domain is reviewed with emphasis on cell signaling. The treatment includes phosphates from protein, lipids, and other molecules, plus the role of reactive oxygen species. Protein sulfation is also discussed.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182, USA.
| | | | | |
Collapse
|
40
|
Kovacic P, Somanathan R. Ototoxicity and noise trauma: electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants: practical medical aspects. Med Hypotheses 2007; 70:914-23. [PMID: 17977665 DOI: 10.1016/j.mehy.2007.06.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/18/2007] [Indexed: 12/01/2022]
Abstract
Ototoxins are substances of various structures and classes. This review provides extensive evidence for involvement of electron transfer (ET), reactive oxygen species (ROS) and oxidative stress (OS) as a unifying theme. Successful application is made to the large majority of ototoxins, as well as noise trauma. We believe it is not coincidental that these toxins generally incorporate ET functionalities (quinone, metal complex, ArNO(2), or conjugated iminium) either per se or in metabolites, potentially giving rise to ROS by redox cycling. Some categories, e.g., peroxides and noise, appear to operate via non-ET routes in generating OS. These highly reactive entities can then inflict injury via OS upon various constituents of the ear apparatus. The theoretical framework is supported by the extensive literature on beneficial effects of antioxidants, both for toxins and noise. Involvement of cell signaling and electrical effects are discussed. This review is the first comprehensive one based on a unified mechanistic approach. Various practical medical aspects are also addressed. There is extensive documentation for beneficial effects of antioxidants whose use might be recommended clinically for prevention of ototoxicity and noise trauma. Recent research indicates that catalytic antioxidants may be more effective. In addition to ototoxicity, a widespread problem consists of ear infections by bacteria which are demonstrating increasing resistance to conventional therapies. A recent, novel approach to improved drugs involves use of agents which inhibit quorum sensors that play important roles in bacterial functioning. Prevention of ear injury by noise trauma is also discussed, along with ear therapeutics.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
41
|
Kovacic P. Protein electron transfer (mechanism and reproductive toxicity): iminium, hydrogen bonding, homoconjugation, amino acid side chains (redox and charged), and cell signaling. ACTA ACUST UNITED AC 2007; 81:51-64. [PMID: 17539014 DOI: 10.1002/bdrc.20086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This contribution presents novel biochemical perspectives of protein electron transfer (ET) with focus on the iminium nature of the peptide link, along with relationships to reproductive toxicity. The favorable influence of hydrogen bonding on protein ET has been widely documented. Hydrogen bonding of the zwitterionic peptide enhances iminium character. A wide array of such bonding agents is available in vivo, with many reports on the peptide link itself. ET proceeds along the backbone, due in part, to homoconjugation. Redox amino acids (AAs), mainly tyrosine (Tyr), tryptophan (Typ), histidine (His), cysteine (Cys), disulfide, and methionine (Met), are involved in the competing processes for radical formation: direct hydrogen atom abstraction versus electron and proton loss. It appears that the radical or radical cation generated during the redox process is capable of interacting with n-electrons of the backbone. Beneficial effects of cationic AAs impact the conduction process. A relationship apparently exists involving cell signaling, protein conduction, and radicals or electrons. In addition, the link between protein ET and reproductive toxicity is examined. A key element is the role of reactive oxygen species (ROS) generated by protein ET. There is extensive evidence for involvement of ROS in generation of birth defects. The radical species arise in protein mainly by ET transformations by enzymes, as illustrated in the case of alcoholism.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92065-1030, USA.
| |
Collapse
|
42
|
Kovacic P. Unifying mechanism for anticancer agents involving electron transfer and oxidative stress: Clinical implications. Med Hypotheses 2007; 69:510-6. [PMID: 17383109 DOI: 10.1016/j.mehy.2006.08.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 08/06/2006] [Indexed: 11/26/2022]
Abstract
Extensive evidence supports involvement of electron transfer (ET), reactive oxygen species (ROS) and oxidative stress (OS) in the mechanism of many anticancer drugs. The common ET functionalities, usually present in the drug metabolites, are quinones (or precursors), metal complexes (or complexors), aromatic nitro compounds (or reduced hydroxylamine and nitroso derivatives), and conjugated imines (or iminium species). The ET agents function catalytically in redox cycling with formation of ROS from oxygen. Electrochemical data add support to the mechanistic viewpoint. The generated metabolites generally possess reduction potentials amenable to ET in vivo, thus giving rise to ROS. The resulting OS is a participant in destruction of the cancer cell. It is important to recognize that drug action is often multipronged. The various modes of action are summarized. Most research has been devoted to development of new and improved chemotherapeutic agents. The need for more attention to measures for cancer prevention is addressed. One of the most promising involves use of antioxidants.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego CA 92182, United States.
| |
Collapse
|
43
|
Kovacic P. Unifying mechanism for bacterial cell signalers (4,5-dihydroxy-2,3-pentanedione, lactones and oligopeptides): Electron transfer and reactive oxygen species. Practical medical features. Med Hypotheses 2007; 69:1105-10. [PMID: 17445992 DOI: 10.1016/j.mehy.2007.01.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/09/2007] [Indexed: 01/07/2023]
Abstract
Cell signaling has attracted much attention involving higher organisms, and more recently is of considerable interest concerning involvement in the bacterial realm. Many aspects can apply, including quorum sensing. Of the participating molecules, designated autoinducers, 4,5-dihydroxy-2,3-pentanedione (DPD) is one of the most important. It is in equilibrium with a furanone and a furanosyl-borate diester (AI-2). A prior hypothesis for cell signaling in higher organisms invoked a key role for electron transfer (ET) and reactive oxygen species (ROS), as well as conduits, relays and electrical effects. The principal ET functionalities are quinones, metal complexes, ArNO(2), and iminium species. A lesser known type is the alpha-dicarbonyl class. Diacetyl, a member, as well as its imine derivatives, can serve as a model for DPD, since the parent possesses a reduction potential amenable to ET in the biological domain. Hence, it is conceivable that DPD and its imine derivatives may be involved in ET-ROS processes. Presence of hydroxy groups should facilitate ET by DPD vs. diacetyl. Extensive prior literature supports participation of ET functionalities in action of therapeutic drugs, toxins and various illnesses. This biochemical behavior also applies to the alpha-dicarbonyl parent models. A second important bacterial autoinducer is the lactone category. Although ET functionality is lacking, the presence of the 1,3-dicarbonyl structure can provide a site for avid chelation with redox metal, e.g., iron or copper, followed by ET-ROS. Findings with added iron furnish support for the proposal. Oligopeptides comprise the third principal type of bacterial signaling agent. A prior review incorporates these within the theoretical framework based on ET by redox amino acids and redox enzymes. In recent years there has been a rapid increase in resistance to antibiotics by pathogenic bacteria. Infectious diseases are the leading cause of death worldwide and the third leading cause in the US. An alternate approach to antibiotics that are becoming less and less effective is to attenuate bacterial virulence. Bacterial infections appear to be importantly associated with biofilm formation. Since quorum sensors play a crucial role in this connection, they provide attractive targets for much-needed, novel approaches. Two of the main autoinducers investigated are the AHL and AI-2 systems. This review summarizes the literature, mostly recent, on this topic. Leads are provided by higher organisms that appear to have evolved means for disrupting bacterial cell communication and, hence, escape colonization. The main types in this category are the furanones, for which both natural and synthetic types have been investigated with promising results.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-1030, USA.
| |
Collapse
|