1
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Ellenrieder M, Schulze C, Ganzlin A, Zaatreh S, Bader R, Mittelmeier W. Invasive electrical stimulation in the treatment of avascular osteonecrosis of the femoral head - mid-term results. Acta Orthop Belg 2023; 89:587-593. [PMID: 38205746 DOI: 10.52628/89.4.9082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The study aimed to evaluate the outcomes of osteonecrosis of the femoral head (ONFH) in adults after surgical treatment including invasive electromagnetic osteostimulation (E-Stim). Further, the influence of disease stage and several comorbidities on the joint preservation rate should be examined. Sixty patients (66 hip joints) with ONFH were included in this retrospective cross-sectional analysis (mean follow-up: 58 months, 19-110 months). Potential ONFH risk factors and comorbidities (ONFH stage, age, sex, alcohol, smoking, cortisone medication, chemotherapy) were recorded. The influence of specific parameters on the joint preservation rates was evaluated by a multivariate logistic regression analysis. Finally, patients with preserved hip joints underwent an assessment of their last available X-rays. The joint preservation rate depended on the initial ONFH Steinberg stage (I+II: 82.8%, III: 70.8%, ≥ IVa: 38.5%). Initially collapsed ONFH (p ≤ 0.001) and cortisone therapy (p = 0.004) significantly decreased the joint preservation rates. In case of progressed ONFH, the presence of ≥ 2 risk factors resulted in higher THA conversion rates (stage III: OR 18.8; stage ≥IVa: OR 12). In 94% of the available X-rays, the ONFH stage improved or did not progress. No complications could be attributed to the E-Stim device or procedure. The present surgical protocol including minimally invasive E-Stim revealed high joint preservation rates for non-collapsed ONFH after mid-term postoperative follow-up. Especially in progressed ONFH, the-risk profile seems to be crucial and hence, for joint preserving surgery, careful patient selection is recommended.
Collapse
|
3
|
Xiao Y, Shen Q, Li W, Zhang Y, Yin K, Xu Y. 280 mT static magnetic field promotes the growth of postpartum condylar cartilage. Connect Tissue Res 2022; 64:248-261. [PMID: 36469671 DOI: 10.1080/03008207.2022.2148527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Functional appliances made of permanent magnets have been used in jaw orthopedic treatment. However, whether the static magnetic field (SMF) generated by permanent magnets promotes the developmental sequence of condylar cartilage and thus promotes the growth of the mandible remains to be studied. The aim of this study was to investigate the effects of 280 mT SMF on postnatal condylar chondrogenesis and endochondral ossification and the roles of FLRT3, FGF2 and BMP2 signaling in this chondrodevelopmental sequences. METHODS Forty-eight rats were assigned to two groups (control and SMF). The condyles were collected at the specified time points. The histomorphological changes in the condyle were observed by histological staining. The expression of proteins related to the proliferation and differentiation of the condylar cartilage and the changes in subchondral bone microstructure were analyzed by immunohistochemical staining and micro-CT scanning. FLRT3, FGF2, and BMP2 expression was detected by immunofluorescence staining. RESULTS Under SMF stimulation, the cartilage of young rats grew longitudinally and laterally, and the thickness of the cartilage became thinner as it grew. The SMF promoted the proliferation and differentiation of condylar chondrocytes and endochondral ossification and increased subchondral bone mineral density, and BMP2 signaling was involved. Moreover, under SMF loading, the increased expression of FGF2 and FLRT3 were involved in regulating cartilage morphogenesis and growth. In late development, the decreased expression of FGF2/FLRT3 and the increased expression of BMP2 promoted endochondral ossification. The SMF accelerated this opposite expression trend. CONCLUSION FGF2/FLRT3 and BMP2 signals are involved in the regulatory effect of SMF exposure on chondrogenesis and endochondral ossification, which provides a theoretical basis for the clinical use of magnetic appliances to promote condylar growth.
Collapse
Affiliation(s)
- Yiwen Xiao
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China.,Department of Stomatology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, China.,Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Qinhao Shen
- Yunnan Key Laboratory of Stomatology, Kunming, China.,Department of the first dental clinic, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Weihao Li
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yibo Zhang
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Kang Yin
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Yanhua Xu
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
4
|
Nicksic PJ, Donnelly DT, Verma N, Setiz AJ, Shoffstall AJ, Ludwig KA, Dingle AM, Poore SO. Electrical Stimulation of Acute Fractures: A Narrative Review of Stimulation Protocols and Device Specifications. Front Bioeng Biotechnol 2022; 10:879187. [PMID: 35721861 PMCID: PMC9201474 DOI: 10.3389/fbioe.2022.879187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic fractures have a significant impact on patients in the form of economic loss and functional impairment. Beyond the standard methods of reduction and fixation, one adjunct that has been explored since the late 1970s is electrical stimulation. Despite robust evidence for efficacy in the preclinical arena, human trials have mixed results, and this technology is not widely accepted. The purpose of this review is to examine the body of literature supporting electrical stimulation for the purpose of fracture healing in humans with an emphasis on device specifications and stimulation protocols and delineate a minimum reporting checklist for future studies of this type. We have isolated 12 studies that pertain to the administration of electrical stimulation for the purpose of augmenting fracture healing in humans. Of these, one was a direct current electrical stimulation study. Six studies utilized pulsed electromagnetic field therapy and five used capacitive coupling. When examining these studies, the device specifications were heterogenous and often incomplete in what they reported, which rendered studies unrepeatable. The stimulation protocols also varied greatly study to study. To demonstrate efficacy of electrical stimulation for fractures, the authors recommend isolating a fracture type that is prone to nonunion to maximize the electrical stimulation effect, a homogenous study population so as to not dilute the effect of electrical stimulation, and increasing scientific rigor in the form of pre-registration, blinding, and sham controls. Finally, we introduce the critical components of minimum device specification reporting for repeatability of studies of this type.
Collapse
Affiliation(s)
- Peter J. Nicksic
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - D’Andrea T. Donnelly
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin—Madison, Madison, WI, United States
| | - Allison J. Setiz
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin—Madison, Madison, WI, United States
- Department of Neurological Surgery, University of Wisconsin—Madison, Madison, WI, United States
| | - Aaron M. Dingle
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Samuel O. Poore
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- *Correspondence: Samuel O. Poore,
| |
Collapse
|
5
|
Nicksic PJ, Donnelly DT, Hesse M, Bedi S, Verma N, Seitz AJ, Shoffstall AJ, Ludwig KA, Dingle AM, Poore SO. Electronic Bone Growth Stimulators for Augmentation of Osteogenesis in In Vitro and In Vivo Models: A Narrative Review of Electrical Stimulation Mechanisms and Device Specifications. Front Bioeng Biotechnol 2022; 10:793945. [PMID: 35237571 PMCID: PMC8882968 DOI: 10.3389/fbioe.2022.793945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/17/2022] [Indexed: 01/23/2023] Open
Abstract
Since the piezoelectric quality of bone was discovered in 1957, scientists have applied exogenous electrical stimulation for the purpose of healing. Despite the efforts made over the past 60 years, electronic bone growth stimulators are not in common clinical use. Reasons for this include high cost and lack of faith in the efficacy of bone growth stimulators on behalf of clinicians. The purpose of this narrative review is to examine the preclinical body of literature supporting electrical stimulation and its effect on bone properties and elucidate gaps in clinical translation with an emphasis on device specifications and mechanisms of action. When examining these studies, trends become apparent. In vitro and small animal studies are successful in inducing osteogenesis with all electrical stimulation modalities: direct current, pulsed electromagnetic field, and capacitive coupling. However, large animal studies are largely unsuccessful with the non-invasive modalities. This may be due to issues of scale and thickness of tissue planes with varying levels of resistivity, not present in small animal models. Additionally, it is difficult to draw conclusions from studies due to the varying units of stimulation strength and stimulation protocols and incomplete device specification reporting. To better understand the disconnect between the large and small animal model, the authors recommend increasing scientific rigor for these studies and reporting a novel minimum set of parameters depending on the stimulation modality.
Collapse
Affiliation(s)
- Peter J. Nicksic
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - D’Andrea T. Donnelly
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Madison Hesse
- Des Moines University School of Medicine and Health Sciences, Des Moines, IA, United States
| | - Simran Bedi
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States,Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
| | - Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States,Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States
| | - Allison J. Seitz
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States,Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States
| | - Aaron M. Dingle
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Samuel O. Poore
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States,*Correspondence: Samuel O. Poore,
| |
Collapse
|
6
|
Yan J, Liu C, Tu C, Zhang R, Tang X, Li H, Wang H, Ma Y, Zhang Y, Wu H, Sheng G. Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits. Stem Cell Res Ther 2021; 12:572. [PMID: 34774092 PMCID: PMC8590294 DOI: 10.1186/s13287-021-02638-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cartilage damage is a common medical issue in clinical practice. Complete cartilage repair remains a significant challenge owing to the inferior quality of regenerative tissue. Safe and non-invasive magnetic therapy combined with tissue engineering to repair cartilage may be a promising breakthrough. METHODS In this study, a composite scaffold made of Hydroxyapatite-Collagen type-I (HAC) and PLGA-PEG-PLGA thermogel was produced to match the cartilage and subchondral layers in osteochondral defects, respectively. Bone marrow mesenchymal stem cells (BMSC) encapsulated in the thermogel were stimulated by an electromagnetic field (EMF). Effect of EMF on the proliferation and chondrogenic differentiation potential was evaluated in vitro. 4 mm femoral condyle defect was constructed in rabbits. The scaffolds loaded with BMSCs were implanted into the defects with or without EMF treatment. Effects of the combination treatment of the EMF and composite scaffold on rabbit osteochondral defect was detected in vivo. RESULTS In vitro experiments showed that EMF could promote proliferation and chondrogenic differentiation of BMSCs partly by activating the PI3K/AKT/mTOR and Wnt1/LRP6/β-catenin signaling pathway. In vivo results further confirmed that the scaffold with EMF enhances the repair of osteochondral defects in rabbits, and, in particular, cartilage repair. CONCLUSION Hydrogel-Hydroxyapatite-Monomeric Collagen type-I scaffold with low-frequency EMF treatment has the potential to enhance osteochondral repair.
Collapse
Affiliation(s)
- Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Chang Tu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ruizhuo Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Huaixi Wang
- Department of Spine and Spinal Cord Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan, Zhengzhou, People's Republic of China
| | - Yongzhuang Ma
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yingchi Zhang
- Department of Traumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Spangenberg J, Kilian D, Czichy C, Ahlfeld T, Lode A, Günther S, Odenbach S, Gelinsky M. Bioprinting of Magnetically Deformable Scaffolds. ACS Biomater Sci Eng 2021; 7:648-662. [DOI: 10.1021/acsbiomaterials.0c01371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Janina Spangenberg
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Charis Czichy
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stefan Günther
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Stefan Odenbach
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|