1
|
Sauty SM, Fisher A, Dolson A, Yankulov K. Mutations in the DNA processivity factor POL30 predispose the FLO11 locus to epigenetic instability in S. cerevisiae. J Cell Sci 2024; 137:jcs262006. [PMID: 39552290 PMCID: PMC11827858 DOI: 10.1242/jcs.262006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
The FLO genes in Saccharomyces cerevisiae are repressed by heterochromatin formation, involving histone deacetylases, transcription factors and non-coding RNAs. Here, we report that mutations in the processivity factor POL30 (PCNA) that show transient derepression at the subtelomeres and the mating-type loci do not derepress FLO loci. However, deletions of the replisome stability factors RRM3 and TOF1 along with pol30 mutations induced flocculation phenotypes. The phenotypes correlated with increased expression of reporter proteins driven by the FLO11 promoter, the frequency of silent to active conversions of FLO11, and reduced expression of the regulatory long non-coding RNAs ICR1 and PWR1. Alterations in the local replication landscape of FLO11 indicate a link between defects in the fork protection complex and the stability of gene silencing. Analyses of these mutants at the subtelomeres and the HMLα locus showed a similar derepression phenotype and suggest transient instability of both active and silent states of FLO11. We conclude that RRM3 and TOF1 interact differentially with the pol30 mutations to promote transient derepression or complete epigenetic conversions of FLO11. We suggest that the interaction between POL30, RRM3 and TOF1 is essential to maintain epigenetic stability at the studied loci.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Andrew Dolson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
2
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
3
|
Manivannan V, Inamdar MM, Padinhateeri R. Role of diffusion and reaction of the constituents in spreading of histone modification marks. PLoS Comput Biol 2024; 20:e1012235. [PMID: 38991050 PMCID: PMC11265668 DOI: 10.1371/journal.pcbi.1012235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/23/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Cells switch genes ON or OFF by altering the state of chromatin via histone modifications at specific regulatory locations along the chromatin polymer. These gene regulation processes are carried out by a network of reactions in which the histone marks spread to neighboring regions with the help of enzymes. In the literature, this spreading has been studied as a purely kinetic, non-diffusive process considering the interactions between neighboring nucleosomes. In this work, we go beyond this framework and study the spreading of modifications using a reaction-diffusion (RD) model accounting for the diffusion of the constituents. We quantitatively segregate the modification profiles generated from kinetic and RD models. The diffusion and degradation of enzymes set a natural length scale for limiting the domain size of modification spreading, and the resulting enzyme limitation is inherent in our model. We also demonstrate the emergence of confined modification domains without the explicit requirement of a nucleation site. We explore polymer compaction effects on spreading and show that single-cell domains may differ from averaged profiles. We find that the modification profiles from our model are comparable with existing H3K9me3 data of S. pombe.
Collapse
Affiliation(s)
- Vinoth Manivannan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
4
|
Abdulla AZ, Salari H, Tortora MMC, Vaillant C, Jost D. 4D epigenomics: deciphering the coupling between genome folding and epigenomic regulation with biophysical modeling. Curr Opin Genet Dev 2023; 79:102033. [PMID: 36893485 DOI: 10.1016/j.gde.2023.102033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
Recent experimental observations suggest a strong coupling between the 3D nuclear chromosome organization and epigenomics. However, the mechanistic and functional bases of such interplay remain elusive. In this review, we describe how biophysical modeling has been instrumental in characterizing how genome folding may impact the formation of epigenomic domains and, conversely, how epigenomic marks may affect chromosome conformation. Finally, we discuss how this mutual feedback loop between chromatin organization and epigenome regulation, via the formation of physicochemical nanoreactors, may represent a key functional role of 3D compartmentalization in the assembly and maintenance of stable - but yet plastic - epigenomic landscapes.
Collapse
Affiliation(s)
- Amith Z Abdulla
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France; École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France. https://twitter.com/@AmithZafal
| | - Hossein Salari
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France; École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France. https://twitter.com/@hosseinsalari65
| | - Maxime M C Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| | - Cédric Vaillant
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France.
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
5
|
Abdulla AZ, Vaillant C, Jost D. Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory. Nucleic Acids Res 2022; 50:9083-9104. [PMID: 36018799 PMCID: PMC9458448 DOI: 10.1093/nar/gkac702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
In eukaryotes, many stable and heritable phenotypes arise from the same DNA sequence, owing to epigenetic regulatory mechanisms relying on the molecular cooperativity of 'reader-writer' enzymes. In this work, we focus on the fundamental, generic mechanisms behind the epigenome memory encoded by post-translational modifications of histone tails. Based on experimental knowledge, we introduce a unified modeling framework, the painter model, describing the mechanistic interplay between sequence-specific recruitment of chromatin regulators, chromatin-state-specific reader-writer processes and long-range spreading mechanisms. A systematic analysis of the model building blocks highlights the crucial impact of tridimensional chromatin organization and state-specific recruitment of enzymes on the stability of epigenomic domains and on gene expression. In particular, we show that enhanced 3D compaction of the genome and enzyme limitation facilitate the formation of ultra-stable, confined chromatin domains. The model also captures how chromatin state dynamics impact the intrinsic transcriptional properties of the region, slower kinetics leading to noisier expression. We finally apply our framework to analyze experimental data, from the propagation of γH2AX around DNA breaks in human cells to the maintenance of heterochromatin in fission yeast, illustrating how the painter model can be used to extract quantitative information on epigenomic molecular processes.
Collapse
Affiliation(s)
- Amith Z Abdulla
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d’Italie, 69007 Lyon, France,École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d’Italie, 69007 Lyon, France
| | - Cédric Vaillant
- Correspondence may also be addressed to Cédric Vaillant. Tel: +33 4 72 72 81 54; Fax: +33 4 72 72 80 00;
| | - Daniel Jost
- To whom correspondence should be addressed. Tel: +33 4 72 72 86 30; Fax: +33 4 72 72 80 00;
| |
Collapse
|
6
|
Lensch S, Herschl MH, Ludwig CH, Sinha J, Hinks MM, Mukund A, Fujimori T, Bintu L. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 2022; 11:e75115. [PMID: 35678392 PMCID: PMC9183234 DOI: 10.7554/elife.75115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.
Collapse
Affiliation(s)
- Sarah Lensch
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael H Herschl
- University of California, Berkeley—University of California, San Francisco Graduate Program in BioengineeringBerkeleyUnited States
| | - Connor H Ludwig
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Michaela M Hinks
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Adi Mukund
- Biophysics Program, Stanford UniversityStanfordUnited States
| | - Taihei Fujimori
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
7
|
Erenpreisa J, Krigerts J, Salmina K, Gerashchenko BI, Freivalds T, Kurg R, Winter R, Krufczik M, Zayakin P, Hausmann M, Giuliani A. Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis). Cells 2021; 10:1582. [PMID: 34201566 PMCID: PMC8304199 DOI: 10.3390/cells10071582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural organization principle of CHR regulating transcriptional pulsing. The dynamic CHR network is likely created together with nucleolus-associated chromatin domains, while the alveoli of this network, including springy splicing speckles, are the pulsing transcription hubs. CHR contributes to this regulation due to the silencing position variegation effect, stickiness, and flexible rigidity determined by the positioning of nucleosomes. The whole system acts in concert with the elastic nuclear actomyosin network which also emerges by self-organization during the transcriptional pulsing process. We hypothesize that the the transcriptional pulsing, in turn, adjusts its frequency/amplitudes specified by topologically associating domains to the replication timing code that determines epigenetic differentiation memory.
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Jekabs Krigerts
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Bogdan I. Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine;
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia;
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia;
| | - Ruth Winter
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Matthias Krufczik
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Pawel Zayakin
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| |
Collapse
|
8
|
Shaban K, Sauty SM, Yankulov K. Variation, Variegation and Heritable Gene Repression in S. cerevisiae. Front Genet 2021; 12:630506. [PMID: 33747046 PMCID: PMC7970126 DOI: 10.3389/fgene.2021.630506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Phenotypic heterogeneity provides growth advantages for a population upon changes of the environment. In S. cerevisiae, such heterogeneity has been observed as "on/off" states in the expression of individual genes in individual cells. These variations can persist for a limited or extended number of mitotic divisions. Such traits are known to be mediated by heritable chromatin structures, by the mitotic transmission of transcription factors involved in gene regulatory circuits or by the cytoplasmic partition of prions or other unstructured proteins. The significance of such epigenetic diversity is obvious, however, we have limited insight into the mechanisms that generate it. In this review, we summarize the current knowledge of epigenetically maintained heterogeneity of gene expression and point out similarities and converging points between different mechanisms. We discuss how the sharing of limiting repression or activation factors can contribute to cell-to-cell variations in gene expression and to the coordination between short- and long- term epigenetic strategies. Finally, we discuss the implications of such variations and strategies in adaptation and aging.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Abstract
Chromatin ‘blobs’ were recently identified by live super-resolution imaging of labeled nucleosomes as pervasive but fleeting structural entities. However, the mechanisms leading to the formation of these blobs and their functional implications are unknown. We explore here whether causal relationships exist between parameters that characterize the chromatin blob dynamics and structure, by adapting a framework for spatio-temporal Granger-causality inference. Our analysis reveals that chromatin dynamics is a key determinant for both blob area and local density. Such causality, however, could be demonstrated only in 10–20% of the nucleus, suggesting that chromatin dynamics and structure at the nanometer scale are dominated by stochasticity. We show that the theory of active semiflexible polymers can be invoked to provide potential mechanisms leading to the organization of chromatin into blobs. Our results represent a first step toward elucidating the mechanisms that govern the dynamic and stochastic organization of chromatin in the cell nucleus.
Collapse
Affiliation(s)
- Roman Barth
- Department of Bionanoscience, Delft University of Technology , Delft, The Netherlands
| | - Genevieve Fourel
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University of Claude Bernard, CNRS UMR 5239, Inserm U1210 , Lyon, France.,Centre Blaise Pascal, ENS de Lyon , Lyon, France
| | - Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre , Cairo, Egypt.,Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University , Cambridge, MA, USA
| |
Collapse
|
10
|
Shaban HA, Barth R, Bystricky K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol 2020; 21:278. [PMID: 33203432 PMCID: PMC7670612 DOI: 10.1186/s13059-020-02185-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic genome is hierarchically structured yet highly dynamic. Regulating transcription in this environment demands a high level of coordination to permit many proteins to interact with chromatin fiber at appropriate sites in a timely manner. We describe how recent advances in quantitative imaging techniques overcome caveats of sequencing-based methods (Hi-C and related) by enabling direct visualization of transcription factors and chromatin at high resolution, from single genes to the whole nucleus. We discuss the contribution of fluorescence imaging to deciphering the principles underlying this coordination within the crowded nuclear space in living cells and discuss challenges ahead.
Collapse
Affiliation(s)
- Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Cairo, 12622, Egypt.
- Current Address: Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Roman Barth
- Department of Bionanoscience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
11
|
Herbach U, Bonnaffoux A, Espinasse T, Gandrillon O. Inferring gene regulatory networks from single-cell data: a mechanistic approach. BMC SYSTEMS BIOLOGY 2017; 11:105. [PMID: 29157246 PMCID: PMC5697158 DOI: 10.1186/s12918-017-0487-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023]
Abstract
Background The recent development of single-cell transcriptomics has enabled gene expression to be measured in individual cells instead of being population-averaged. Despite this considerable precision improvement, inferring regulatory networks remains challenging because stochasticity now proves to play a fundamental role in gene expression. In particular, mRNA synthesis is now acknowledged to occur in a highly bursty manner. Results We propose to view the inference problem as a fitting procedure for a mechanistic gene network model that is inherently stochastic and takes not only protein, but also mRNA levels into account. We first explain how to build and simulate this network model based upon the coupling of genes that are described as piecewise-deterministic Markov processes. Our model is modular and can be used to implement various biochemical hypotheses including causal interactions between genes. However, a naive fitting procedure would be intractable. By performing a relevant approximation of the stationary distribution, we derive a tractable procedure that corresponds to a statistical hidden Markov model with interpretable parameters. This approximation turns out to be extremely close to the theoretical distribution in the case of a simple toggle-switch, and we show that it can indeed fit real single-cell data. As a first step toward inference, our approach was applied to a number of simple two-gene networks simulated in silico from the mechanistic model and satisfactorily recovered the original networks. Conclusions Our results demonstrate that functional interactions between genes can be inferred from the distribution of a mechanistic, dynamical stochastic model that is able to describe gene expression in individual cells. This approach seems promising in relation to the current explosion of single-cell expression data. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0487-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulysse Herbach
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d'Italie Site Jacques Monod, Lyon, F-69007, France.,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, Villeurbanne Cedex, F-6962, France
| | - Arnaud Bonnaffoux
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d'Italie Site Jacques Monod, Lyon, F-69007, France.,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France.,The CoSMo company, 5 passage du Vercors, Lyon, 69007, France
| | - Thibault Espinasse
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, Villeurbanne Cedex, F-6962, France
| | - Olivier Gandrillon
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d'Italie Site Jacques Monod, Lyon, F-69007, France. .,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France.
| |
Collapse
|
12
|
Wyse BA, Oshidari R, Jeffery DC, Yankulov KY. Parasite epigenetics and immune evasion: lessons from budding yeast. Epigenetics Chromatin 2013; 6:40. [PMID: 24252437 PMCID: PMC3843538 DOI: 10.1186/1756-8935-6-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/11/2013] [Indexed: 11/23/2022] Open
Abstract
The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast.
Collapse
Affiliation(s)
| | | | | | - Krassimir Y Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada.
| |
Collapse
|
13
|
Kueng S, Oppikofer M, Gasser SM. SIR proteins and the assembly of silent chromatin in budding yeast. Annu Rev Genet 2013; 47:275-306. [PMID: 24016189 DOI: 10.1146/annurev-genet-021313-173730] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin in which a histone-binding protein complex [the SIR (silent information regulator) complex] represses gene transcription in a sequence-independent manner by spreading along nucleosomes, much like heterochromatin in higher eukaryotes. Recent advances in the biochemistry and structural biology of the SIR-chromatin system bring us much closer to a molecular understanding of yeast silent chromatin. Simultaneously, genome-wide approaches have shed light on the biological importance of this form of epigenetic repression. Here, we integrate genetic, structural, and cell biological data into an updated overview of yeast silent chromatin assembly.
Collapse
Affiliation(s)
- Stephanie Kueng
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | |
Collapse
|
14
|
Chakraborty SA, Simpson RT, Grigoryev SA. A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes. PLoS One 2011; 6:e24835. [PMID: 21949764 PMCID: PMC3174977 DOI: 10.1371/journal.pone.0024835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.
Collapse
Affiliation(s)
- Sangita A. Chakraborty
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: (SAC); (SAG)
| | - Robert T. Simpson
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sergei A. Grigoryev
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: (SAC); (SAG)
| |
Collapse
|
15
|
Wang J, Lunyak VV, Jordan IK. Genome-wide prediction and analysis of human chromatin boundary elements. Nucleic Acids Res 2011; 40:511-29. [PMID: 21930510 PMCID: PMC3258141 DOI: 10.1093/nar/gkr750] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Boundary elements partition eukaryotic chromatin into active and repressive domains, and can also block regulatory interactions between domains. Boundary elements act via diverse mechanisms making accurate feature-based computational predictions difficult. Therefore, we developed an unbiased algorithm that predicts the locations of human boundary elements based on the genomic distributions of chromatin and transcriptional states, as opposed to any intrinsic characteristics that they may possess. Application of our algorithm to ChIP-seq data for histone modifications and RNA Pol II-binding data in human CD4(+) T cells resulted in the prediction of 2542 putative chromatin boundary elements genome wide. Predicted boundary elements display two distinct features: first, position-specific open chromatin and histone acetylation that is coincident with the recruitment of sequence-specific DNA-binding factors such as CTCF, EVI1 and YYI, and second, a directional and gradual increase in histone lysine methylation across predicted boundaries coincident with a gain of expression of non-coding RNAs, including examples of boundaries encoded by tRNA and other non-coding RNA genes. Accordingly, a number of the predicted human boundaries may function via the synergistic action of sequence-specific recruitment of transcription factors leading to non-coding RNA transcriptional interference and the blocking of facultative heterochromatin propagation by transcription-associated chromatin remodeling complexes.
Collapse
Affiliation(s)
- Jianrong Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA and PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - Victoria V. Lunyak
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA and PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - I. King Jordan
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA and PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
- *To whom correspondence should be addressed. Tel: +1 404 385 2224; Fax: +404 894 0519;
| |
Collapse
|
16
|
Gaussin A, Modlich U, Bauche C, Niederländer NJ, Schambach A, Duros C, Artus A, Baum C, Cohen-Haguenauer O, Mermod N. CTF/NF1 transcription factors act as potent genetic insulators for integrating gene transfer vectors. Gene Ther 2011; 19:15-24. [DOI: 10.1038/gt.2011.70] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Power P, Jeffery D, Rehman MA, Chatterji A, Yankulov K. Sub-telomeric core X and Y' elements in S. cerevisiae suppress extreme variations in gene silencing. PLoS One 2011; 6:e17523. [PMID: 21437278 PMCID: PMC3060084 DOI: 10.1371/journal.pone.0017523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/04/2011] [Indexed: 11/23/2022] Open
Abstract
Telomere Position Effect (TPE) is governed by strong repression signals emitted by telomeres via the Sir2/3/4 Histone Deacetylase complex. These signals are then relayed by weak proto-silencers residing in the subtelomeric core X and Y' elements. Subtelomeres also contain Sub-Telomeric Anti-silencing Regions (STARs). In this study we have prepared telomeres built of different combinations of core X, Y' and STARs and have analyzed them in strains lacking Histone-Acetyltransferase genes as well as in cdc6-1 and Δrif1 strains. We show that core X and Y' dramatically reduce both positive and negative variations in TPE, that are caused by these mutations. We also show that the deletion of Histone-Acetyltransferase genes reduce the silencing activity of an ACS proto-silencer, but also reduce the anti-silencing activity of a STAR. We postulate that core X and Y' act as epigenetic “cushioning” cis-elements.
Collapse
Affiliation(s)
- Patricia Power
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Daniel Jeffery
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Muhammad Attiq Rehman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Arjun Chatterji
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Tran DA, Wong TC, Schep AN, Drewell RA. Characterization of an Ultra-Conserved Putativecis-Regulatory Module at the Mammalian Telomerase Reverse Transcriptase Gene. DNA Cell Biol 2010; 29:499-508. [DOI: 10.1089/dna.2009.0994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Diana A. Tran
- Department of Biology, Harvey Mudd College, Claremont, California
| | - Terence C. Wong
- Department of Biology, Harvey Mudd College, Claremont, California
| | - Alicia N. Schep
- Department of Biology, Harvey Mudd College, Claremont, California
| | | |
Collapse
|
19
|
Kelemen JZ, Ratna P, Scherrer S, Becskei A. Spatial epigenetic control of mono- and bistable gene expression. PLoS Biol 2010; 8:e1000332. [PMID: 20305717 PMCID: PMC2838748 DOI: 10.1371/journal.pbio.1000332] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/09/2010] [Indexed: 11/18/2022] Open
Abstract
Bistability in signaling networks is frequently employed to promote stochastic switch-like transitions between cellular differentiation states. Differentiation can also be triggered by antagonism of activators and repressors mediated by epigenetic processes that constitute regulatory circuits anchored to the chromosome. Their regulatory logic has remained unclear. A reaction-diffusion model reveals that the same reaction mechanism can support both graded monostable and switch-like bistable gene expression, depending on whether recruited repressor proteins generate a single silencing gradient or two interacting gradients that flank a gene. Our experiments confirm that chromosomal recruitment of activator and repressor proteins permits a plastic form of control; the stability of gene expression is determined by the spatial distribution of silencing nucleation sites along the chromosome. The unveiled regulatory principles will help to understand the mechanisms of variegated gene expression, to design synthetic genetic networks that combine transcriptional regulatory motifs with chromatin-based epigenetic effects, and to control cellular differentiation.
Collapse
Affiliation(s)
- János Z. Kelemen
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Prasuna Ratna
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Simone Scherrer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Attila Becskei
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Du Z, Zhao Y, Li N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs. Nucleic Acids Res 2009; 37:6784-98. [PMID: 19759215 PMCID: PMC2777415 DOI: 10.1093/nar/gkp710] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
G-quadruplex (or G4 DNA), a stable four-stranded structure found in guanine-rich regions, is implicated in the transcriptional regulation of genes involved in growth and development. Previous studies on the role of G4 DNA in gene regulation mostly focused on genomic regions proximal to transcription start sites (TSSs). To gain a more comprehensive understanding of the regulatory role of G4 DNA, we examined the landscape of potential G4 DNA (PG4Ms) motifs in the human genome and found that G4 motifs, not restricted to those found in the TSS-proximal regions, are bias toward gene-associated regions. Significantly, analyses of G4 motifs in seven types of well-known gene regulatory elements revealed a constitutive enrichment pattern and the clusters of G4 motifs tend to be colocalized with regulatory elements. Considering our analysis from a genome evolutionary perspective, we found evidence that the occurrence and accumulation of certain progenitors and canonical G4 DNA motifs within regulatory regions were progressively favored by natural selection. Our results suggest that G4 DNA motifs are ‘colonized’ in regulatory regions, supporting a likely genome-wide role of G4 DNA in gene regulation. We hypothesize that G4 DNA is a regulatory apparatus situated in regulatory elements, acting as a molecular switch that can modulate the role of the host functional regions, by transition in DNA structure.
Collapse
Affiliation(s)
- Zhuo Du
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, PR China
| | | | | |
Collapse
|
21
|
Abstract
Chromatin insulators separate active from repressed chromatin domains. In yeast the RNA pol III transcription machinery bound to tRNA genes function with histone acetylases and chromatin remodelers to restrict the spread of heterochromatin. Our results collectively demonstrate that binding of TFIIIC is necessary for insulation but binding of TFIIIB along with TFIIIC likely improves the probability of complex formation at an insulator. Insulation by this transcription factor occurs in the absence of RNA polymerase III or polymerase II but requires specific histone acetylases and chromatin remodelers. This analysis identifies a minimal set of factors required for insulation.
Collapse
|
22
|
Rehman MA, Wang D, Fourel G, Gilson E, Yankulov K. Subtelomeric ACS-containing proto-silencers act as antisilencers in replication factors mutants in Saccharomyces cerevisiae. Mol Biol Cell 2008; 20:631-41. [PMID: 19005221 DOI: 10.1091/mbc.e08-01-0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Subtelomeric genes are either fully active or completely repressed and can switch their state about once per 20 generations. This meta-stable telomeric position effect is mediated by strong repression signals emitted by the telomere and relayed/enhanced by weaker repressor elements called proto-silencers. In addition, subtelomeric regions contain sequences with chromatin partitioning and antisilencing activities referred to as subtelomeric antisilencing regions. Using extensive mutational analysis of subtelomeric elements, we show that ARS consensus sequence (ACS)-containing proto-silencers convert to antisilencers in several replication factor mutants. We point out the significance of the B1 auxiliary sequence next to ACS in mediating these effects. In contrast, an origin-derived ACS does not convert to antisilencer in mutants and its B1 element has little bearing on silencing. These results are specific for the analyzed ACS and in addition to the effects of each mutation (relative to wild type) on global silencing. Another line of experiments shows that Mcm5p possesses antisilencing activity and is recruited to telomeres in an ACS-dependent manner. Mcm5p persists at this location at the late stages of S phase. We propose that telomeric ACS are not static proto-silencers but conduct finely tuned silencing and antisilencing activities mediated by ACS-bound factors.
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | | | | | | | | |
Collapse
|
23
|
Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 2008; 7:29-59. [PMID: 16719718 DOI: 10.1146/annurev.genom.7.080505.115623] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The faithful execution of biological processes requires a precise and carefully orchestrated set of steps that depend on the proper spatial and temporal expression of genes. Here we review the various classes of transcriptional regulatory elements (core promoters, proximal promoters, distal enhancers, silencers, insulators/boundary elements, and locus control regions) and the molecular machinery (general transcription factors, activators, and coactivators) that interacts with the regulatory elements to mediate precisely controlled patterns of gene expression. The biological importance of transcriptional regulation is highlighted by examples of how alterations in these transcriptional components can lead to disease. Finally, we discuss the methods currently used to identify transcriptional regulatory elements, and the ability of these methods to be scaled up for the purpose of annotating the entire human genome.
Collapse
Affiliation(s)
- Glenn A Maston
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
24
|
Bao L, Zhou M, Cui Y. CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators. Nucleic Acids Res 2007; 36:D83-7. [PMID: 17981843 PMCID: PMC2238977 DOI: 10.1093/nar/gkm875] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recent studies on transcriptional control of gene expression have pinpointed the importance of long-range interactions and three-dimensional organization of chromatins within the nucleus. Distal regulatory elements such as enhancers may activate transcription over long distances; hence, their action must be restricted within appropriate boundaries to prevent illegitimate activation of non-target genes. Insulators are DNA elements with enhancer-blocking and/or chromatin-bordering functions. In vertebrates, the versatile transcription regulator CCCTC-binding factor (CTCF) is the only identified trans-acting factor that confers enhancer-blocking insulator activity. CTCF-binding sites were found to be commonly distributed along the vertebrate genomes. We have constructed a CTCF-binding site database (CTCFBSDB) to characterize experimentally identified and computationally predicted CTCF-binding sties. Biological knowledge and data from multiple resources have been integrated into the database, including sequence data, genetic polymorphisms, function annotations, histone methylation profiles, gene expression profiles and comparative genomic information. A web-based user interface was implemented for data retrieval, analysis and visualization. In silico prediction of CTCF-binding motifs is provided to facilitate the identification of candidate insulators in the query sequences submitted by users. The database can be accessed at http://insulatordb.utmem.edu/
Collapse
Affiliation(s)
- Lei Bao
- Department of Molecular Sciences, Center of Genomics and Bioinformatics, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
25
|
de Wit E, Greil F, van Steensel B. High-resolution mapping reveals links of HP1 with active and inactive chromatin components. PLoS Genet 2007; 3:e38. [PMID: 17335352 PMCID: PMC1808074 DOI: 10.1371/journal.pgen.0030038] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 01/19/2007] [Indexed: 12/22/2022] Open
Abstract
Heterochromatin protein 1 (HP1) is commonly seen as a key factor of repressive heterochromatin, even though a few genes are known to require HP1-chromatin for their expression. To obtain insight into the targeting of HP1 and its interplay with other chromatin components, we have mapped HP1-binding sites on Chromosomes 2 and 4 in Drosophila Kc cells using high-density oligonucleotide arrays and the DNA adenine methyltransferase identification (DamID) technique. The resulting high-resolution maps show that HP1 forms large domains in pericentric regions, but is targeted to single genes on chromosome arms. Intriguingly, HP1 shows a striking preference for exon-dense genes on chromosome arms. Furthermore, HP1 binds along entire transcription units, except for 5′ regions. Comparison with expression data shows that most of these genes are actively transcribed. HP1 target genes are also marked by the histone variant H3.3 and dimethylated histone 3 lysine 4 (H3K4me2), which are both typical of active chromatin. Interestingly, H3.3 deposition, which is usually observed along entire transcription units, is limited to the 5′ ends of HP1-bound genes. Thus, H3.3 and HP1 are mutually exclusive marks on active chromatin. Additionally, we observed that HP1-chromatin and Polycomb-chromatin are nonoverlapping, but often closely juxtaposed, suggesting an interplay between both types of chromatin. These results demonstrate that HP1-chromatin is transcriptionally active and has extensive links with several other chromatin components. In each of our cells, a variety of proteins helps to organize the very long DNA fibers into a more compacted structure termed chromatin. Several different types of chromatin exist. Some types of chromatin package DNA rather loosely and thereby allow the genes to be active. Other types, often referred to as heterochromatin, are thought to package the DNA into a condensed structure that prevents the genes from being active. Thus, the different types of chromatin together determine the “gene expression programs” of cells. To understand how this works, it is necessary to identify the genes that are packaged by a particular type of chromatin and to reveal how various chromatin proteins work together to achieve this. Here we present highly detailed maps of the DNA sequences that are packaged by a heterochromatin protein named HP1. The results show that HP1 preferentially binds along the genes themselves and much less to intergenic regions. Contrary to what was previously thought, most genes packaged by HP1 are active. Finally, the data suggest that HP1 may compete with other types of chromatin proteins. These results contribute to our fundamental understanding of the roles of chromatin packaging in gene regulation.
Collapse
Affiliation(s)
- Elzo de Wit
- Department of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frauke Greil
- Department of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Department of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Abstract
Active and silenced chromatin domains are often in close juxtaposition to one another, and enhancer and silencer elements operate over large distances to regulate the genes in these domains. The lack of promiscuity in the function of these elements suggests that active mechanisms exist to restrict their activity. Insulators are DNA elements that restrict the effects of long-range regulatory elements. Studies on different insulators from different organisms have identified common themes in their mode of action. Numerous insulators map to promoters of genes or have binding sites for transcription factors and like active chromatin hubs and silenced loci, insulators also cluster in the nucleus. These results bring into focus potential conserved mechanisms by which these elements might function in the nucleus.
Collapse
Affiliation(s)
- Lourdes Valenzuela
- Unit on Chromatin and Transcription, NICHD/NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
27
|
Friedl AA. The Role of Chromatin Structure and Nuclear Architecture in the Cellular Response to DNA Double-Strand Breaks. Genome Integr 2006. [DOI: 10.1007/7050_001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Rehman MA, Fourel G, Mathews A, Ramdin D, Espinosa M, Gilson E, Yankulov K. Differential requirement of DNA replication factors for subtelomeric ARS consensus sequence protosilencers in Saccharomyces cerevisiae. Genetics 2006; 174:1801-10. [PMID: 16980387 PMCID: PMC1698613 DOI: 10.1534/genetics.106.063446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of silent chromatin requires passage through S-phase, but not DNA replication per se. Nevertheless, many proteins that affect silencing are bona fide DNA replication factors. It is not clear if mutations in these replication factors affect silencing directly or indirectly via deregulation of S-phase or DNA replication. Consequently, the relationship between DNA replication and silencing remains an issue of debate. Here we analyze the effect of mutations in DNA replication factors (mcm5-461, mcm5-1, orc2-1, orc5-1, cdc45-1, cdc6-1, and cdc7-1) on the silencing of a group of reporter constructs, which contain different combinations of "natural" subtelomeric elements. We show that the mcm5-461, mcm5-1, and orc2-1 mutations affect silencing through subtelomeric ARS consensus sequences (ACS), while cdc6-1 affects silencing independently of ACS. orc5-1, cdc45-1, and cdc7-1 affect silencing through ACS, but also show ACS-independent effects. We also demonstrate that isolated nontelomeric ACS do not recapitulate the same effects when inserted in the telomere. We propose a model that defines the modes of action of MCM5 and CDC6 in silencing.
Collapse
|
29
|
Zhao H, Kim A, Song SH, Dean A. Enhancer blocking by chicken beta-globin 5'-HS4: role of enhancer strength and insulator nucleosome depletion. J Biol Chem 2006; 281:30573-80. [PMID: 16877759 DOI: 10.1074/jbc.m606803200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-HS4 chicken beta-globin insulator functions as a positional enhancer blocker on chromatinized episomes in human cells, blocking the HS2 enhancer of the human beta-globin locus control region from activating a downstream epsilon-globin gene. 5'-HS4 interrupted formation of a domain of histone H3 and H4 acetylation encompassing the 6-kb minilocus and inhibited transfer of RNA polymerase from the enhancer to the gene promoter. We found that the enhancer blocking phenotype was amplified when the insulated locus contained a weakened HS2 enhancer in which clustered point mutations eliminated interaction of the transcription factor GATA-1. The GATA-1 mutation compromised recruitment of histone acetyltransferases and RNA polymerase II to HS2. Enhancer blocking correlated with a significant depletion of nucleosomes in the core region of the insulator as revealed by micrococcal nuclease and DNase I digestion studies. Nucleosome depletion at 5'-HS4 was dependent on interaction of the insulator protein CCCTC-binding factor (CTCF) and was required for enhancer blocking. These findings provide evidence that a domain of active chromatin is formed by spreading from an enhancer to a target gene and can be blocked by a nucleosome-free gap in an insulator.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
30
|
Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 2006; 103:10684-9. [PMID: 16815976 PMCID: PMC1484419 DOI: 10.1073/pnas.0600326103] [Citation(s) in RCA: 393] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Indexed: 01/16/2023] Open
Abstract
It is thought that the H19 imprinting control region (ICR) directs the silencing of the maternally inherited Igf2 allele through a CTCF-dependent chromatin insulator. The ICR has been shown to interact physically with a silencer region in Igf2, differentially methylated region (DMR)1, but the role of CTCF in this chromatin loop and whether it restricts the physical access of distal enhancers to Igf2 is not known. We performed systematic chromosome conformation capture analyses in the Igf2/H19 region over >160 kb, identifying sequences that interact physically with the distal enhancers and the ICR. We found that, on the paternal chromosome, enhancers interact with the Igf2 promoters but that, on the maternal allele, this is prevented by CTCF binding within the H19 ICR. CTCF binding in the maternal ICR regulates its interaction with matrix attachment region (MAR)3 and DMR1 at Igf2, thus forming a tight loop around the maternal Igf2 locus, which may contribute to its silencing. Mutation of CTCF binding sites in the H19 ICR leads to loss of CTCF binding and de novo methylation of a CTCF target site within Igf2 DMR1, showing that CTCF can coordinate regional epigenetic marks. This systematic chromosome conformation capture analysis of an imprinting cluster reveals that CTCF has a critical role in the epigenetic regulation of higher-order chromatin structure and gene silencing over considerable distances in the genome.
Collapse
Affiliation(s)
- Sreenivasulu Kurukuti
- Department of Development and Genetics, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | - Vijay Kumar Tiwari
- Department of Development and Genetics, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | - Gholamreza Tavoosidana
- Department of Development and Genetics, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | - Elena Pugacheva
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0760
| | - Adele Murrell
- Department of Oncology and The Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge CB2 2XE, United Kingdom; and
| | - Zhihu Zhao
- Department of Development and Genetics, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | - Victor Lobanenkov
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0760
| | - Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | - Rolf Ohlsson
- Department of Development and Genetics, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| |
Collapse
|
31
|
Scott KC, Merrett SL, Willard HF. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr Biol 2006; 16:119-29. [PMID: 16431364 DOI: 10.1016/j.cub.2005.11.065] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 10/18/2005] [Accepted: 11/23/2005] [Indexed: 01/21/2023]
Abstract
BACKGROUND Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation. Centromeric regions of higher eukaryotes are structurally complex, consisting of various epigenetically modified chromatin types including specialized chromatin at the kinetochore itself, pericentromeric heterochromatin, and flanking euchromatin. Although the features necessary for the establishment and maintenance of discrete chromatin domains remain poorly understood, two models have been proposed based either on the passive convergence of competing activities involved in individual domain formation or, alternatively, on the action of specific genomic sequences and associated proteins to actively block the propagation of one chromatin type into another. RESULTS Functional analysis of centromeric sequences located at the intersection of Schizosaccharomyces pombe central core chromatin and outer repeat heterochromatin identified a chromatin barrier that contains a transfer RNA (tRNA) gene. Deletion or modification of the barrier sequences result in the propagation of pericentromeric heterochromatin beyond its normal boundary. The tRNA gene is transcriptionally active, and barrier activity requires sequences necessary for RNA polymerase III transcription. Moreover, absence of the barrier results in abnormal meiotic chromosome segregation. CONCLUSIONS The identification of DNA sequences with chromatin barrier activity at the fission yeast centromere provides a model for establishment of centromeric chromatin domains in higher eukaryotes.
Collapse
Affiliation(s)
- Kristin C Scott
- Institute for Genome Sciences and Policy, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
32
|
Dilworth DJ, Tackett AJ, Rogers RS, Yi EC, Christmas RH, Smith JJ, Siegel AF, Chait BT, Wozniak RW, Aitchison JD. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. ACTA ACUST UNITED AC 2006; 171:955-65. [PMID: 16365162 PMCID: PMC2171315 DOI: 10.1083/jcb.200509061] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.
Collapse
|
33
|
Abstract
Regulation of gene expression involves a number of different levels of organization in the cell nucleus. The main agents of transcriptional control are the cis-acting sequences in the immediate vicinity of a gene, which combine to form the functional unit or domain. Contacts between these sequences through the formation of chromatin loops forms the most basic level of organization. The activity of functional domains is also influenced by higher order chromatin structures that impede or permit access of factors to the genes. Epigenetic modifications can maintain and propagate these active or repressive chromatin structures across large genomic regions or even entire chromosomes. There is also evidence that transcription is organized into structures called 'factories' and that this can lead to inter-chromosomal contacts between genes that have the potential to influence their regulation.
Collapse
Affiliation(s)
- Niall Dillon
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
34
|
Rodríguez-Trelles F, Tarrío R, Ayala FJ. Is ectopic expression caused by deregulatory mutations or due to gene-regulation leaks with evolutionary potential? Bioessays 2005; 27:592-601. [PMID: 15892118 DOI: 10.1002/bies.20241] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has long been thought that gene expression is tightly regulated in multicellular eukaryotes, so that expression profiles match functional profiles. This conception emerged from the assumption that gene activity is synonymous with gene function. This paradigm was first challenged by comparative protein electrophoresis studies showing extensive differences in expression patterns among related species. The paradigm is now being challenged by evolutionary transcriptomics using microarray technologies. Most gene expression profiles display features that lack any obvious functional significance. The so-called "ectopic" expression refers to the expression of genes at times and locations where the target gene is not known to have a function. However, ectopic expression might be associated with genuine function even if this function is not essential or has yet to be ascertained. Alternatively, ectopic expression might come about as a superfluous by-product of regulatory systems, which would call for a revision of prevailing ideas about the specificity of gene regulation. We herein review available evidence for ectopic expression and the hypotheses proposed for its origin and evolution. We propose that ectopic expression must be regarded as part of an integrated phenotypic whole. It seems likely that ectopic expression represents a leak in the evolution of regulatory systems, but one that is endowed with considerable evolutionary possibilities.
Collapse
|
35
|
Sarge KD, Park-Sarge OK. Gene bookmarking: keeping the pages open. Trends Biochem Sci 2005; 30:605-10. [PMID: 16188444 DOI: 10.1016/j.tibs.2005.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/12/2005] [Accepted: 09/14/2005] [Indexed: 11/19/2022]
Abstract
'Gene bookmarking' is a mechanism of epigenetic memory that functions to transmit through mitosis the pattern of active genes and/or genes that can be activated to daughter cells. It is thought that, at a point before mitosis, genes that exist in an open, transcriptionally competent state are bound by proteins or marked by some kind of modification event. This is thought to facilitate the assembly of transcription complexes on the promoters in early G1, thereby ensuring that daughter cells have the same pattern of gene expression as the cell from which they derived. Little is known, however, about these 'bookmarking factors' and modifications or the mechanisms by which they mediate the transmission of transcriptional competence after mitosis is complete. Recent findings have provided new insights into the mechanisms, regulation and biological importance of gene bookmarking in eukaryotic cell function.
Collapse
Affiliation(s)
- Kevin D Sarge
- Department of Molecular and Cellular Biochemistry, Biomedical/Biological Sciences Research Building, 741 South Limestone Street, Lexington, KY 40536, USA.
| | | |
Collapse
|
36
|
Acuto S, Di Marzo R, Calzolari R, Baiamonte E, Maggio A, Spinelli G. Functional characterization of the sea urchin sns chromatin insulator in erythroid cells. Blood Cells Mol Dis 2005; 35:339-44. [PMID: 16185901 DOI: 10.1016/j.bcmd.2005.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/18/2005] [Accepted: 07/22/2005] [Indexed: 11/17/2022]
Abstract
Chromatin insulators are regulatory elements that determine domains of genetic functions. We have previously described the characterization of a 265 bp insulator element, termed sns, localized at the 3' end of the early histone H2A gene of the sea urchin Paracentrotus lividus. This sequence contains three cis-acting elements (Box A, Box B, and Box C + T) all needed for the enhancer-blocking activity in both sea urchin and human cells. The goal of this study was to further characterize the sea urchin sns insulator in the erythroid environment. We employed colony assays in human (K562) and mouse (MEL) erythroid cell lines. We tested the capability of sns to interfere with the communication between the 5'HS2 enhancer of the human beta-globin LCR and the gamma-globin promoter. We found that the sns sequence displays directional enhancer-blocking activity. By the use of antibodies against known DNA binding proteins, in electrophoretic mobility shift assays, we demonstrated the binding of the erythroid-specific GATA-1 and the ubiquitous Oct-1 and Sp1 transcription factors. These factors bind to Box A, Box B, and Box C + T, respectively, in both K562 and MEL nuclear extracts. These results may have significant implications for the conservation of insulator function in evolutionary distant organisms and may prove to be of practical benefit in gene transfer applications for erythroid disorders such as hemoglobinopathies and thalassemias.
Collapse
Affiliation(s)
- Santina Acuto
- Unità di Ricerca "P. Cutino", Ematologia II, A.O. "V. Cervello", via Trabucco n. 180-90146, Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Kaern M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 2005; 6:451-64. [PMID: 15883588 DOI: 10.1038/nrg1615] [Citation(s) in RCA: 1536] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.
Collapse
Affiliation(s)
- Mads Kaern
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H8M5, Canada.
| | | | | | | |
Collapse
|
38
|
Jambunathan N, Martinez AW, Robert EC, Agochukwu NB, Ibos ME, Dugas SL, Donze D. Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary. Genetics 2005; 171:913-22. [PMID: 16079223 PMCID: PMC1456849 DOI: 10.1534/genetics.105.046938] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen for identifying additional genes that, when mutated, allow inappropriate spreading of silencing from HMR through the tRNA gene was performed. YTA7, a gene containing bromodomain and ATPase homologies, was identified multiple times. Previously, others had shown that the bromodomain protein Bdf1p functions to restrict silencing at yeast euchromatin-heterochromatin boundaries; therefore we deleted nonessential bromodomain-containing genes to test their effects on heterochromatin spreading. Deletion of RSC2, coding for a component of the RSC chromatin-remodeling complex, resulted in a significant spread of silencing at HMR. Since the bromodomain of YTA7 lacks a key tyrosine residue shown to be important for acetyllysine binding in other bromodomains, we confirmed that a GST-Yta7p bromodomain fusion was capable of binding to histones in vitro. Epistasis analysis suggests that YTA7 and the HMR-tRNA function independently to restrict the spread of silencing, while RSC2 may function through the tRNA element. Our results suggest that multiple bromodomain proteins are involved in restricting the propagation of heterochromatin at HMR.
Collapse
Affiliation(s)
- Nithya Jambunathan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
|