1
|
Miltiadous A, Buchanan KL. Experimental manipulation of maternal corticosterone: Hormone transfer to the yolk in the zebra finch Taeniopygia guttata. Gen Comp Endocrinol 2021; 313:113898. [PMID: 34492223 DOI: 10.1016/j.ygcen.2021.113898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Maternally-derived hormones affect offspring physiological and behavioural phenotype, plausibly as an adaptive response to maternal environmental conditions. Corticosterone (CORT), the principal avian glucocorticoid produced in response to stress, is recognised as a potential mediator of such maternal reproductive effects. Maternally-derived yolk CORT is implicated in mediating offspring growth and hatchling begging behaviour. However, determining the potential for maternal effects in opportunistic breeders subject to variable environments relies on understanding whether natural variation in maternal circulating hormones may directly impact the embryo during development. Therefore, we tested whether elevated maternal CORT concentrations increase yolk CORT concentrations in zebra finch (Taeniopygia guttata) eggs. We remotely dosed breeding females with biologically-relevant doses of CORT, or the oil vehicle, 0-3 h prior to the predicted time of ovulation, and allowed pairs to produce two clutches, one under each treatment, in a crosswise, balanced design. CORT dosing elevated maternal plasma CORT and increased mean yolk CORT by a factor of 1.75 compared to the egg yolks of control mothers. Importantly, CORT concentrations did not differ between inner and outer layers of yolk. We found no egg lay order effect and maternal CORT dosing did not influence reproductive outputs (clutch initiation date, clutch size or egg mass). Our results confirm the direct impact of biologically-relevant increases in maternal CORT on yolk CORT, providing evidence that maternal CORT concentrations during yolk deposition to the follicle alters embryonic exogenous CORT exposure. Further research is required to determine the impact of maternal CORT on embryonic developmental programming.
Collapse
Affiliation(s)
- Anna Miltiadous
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
2
|
Yuryev M, Pellegrino C, Jokinen V, Andriichuk L, Khirug S, Khiroug L, Rivera C. In vivo Calcium Imaging of Evoked Calcium Waves in the Embryonic Cortex. Front Cell Neurosci 2016; 9:500. [PMID: 26778965 PMCID: PMC4701926 DOI: 10.3389/fncel.2015.00500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation, and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this approach we demonstrate induction of calcium waves by laser stimulation. These waves are sensitive to ATP-receptor blockade and are significantly increased by pharmacological facilitation of intracellular-calcium release. This approach is the closest to physiological conditions yet achieved for imaging of calcium in the embryonic brain and as such opens new avenues for the study of prenatal brain development. Furthermore, the developed method could open the possibilities of preclinical translational studies in embryos particularly important for developmentally related diseases such as schizophrenia and autism.
Collapse
Affiliation(s)
- Mikhail Yuryev
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Christophe Pellegrino
- INSERM U901, Institut de Neurobiologie de la Méditerranée (INMED), Parc Scientifique de LuminyMarseille, France; Aix-Marseille Université (AMU), UMR S901, Parc Scientifique de LuminyMarseille, France
| | - Ville Jokinen
- School of Chemical Technology, Aalto University Espoo, Finland
| | | | | | - Leonard Khiroug
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, University of HelsinkiHelsinki, Finland; INSERM U901, Institut de Neurobiologie de la Méditerranée (INMED), Parc Scientifique de LuminyMarseille, France; Aix-Marseille Université (AMU), UMR S901, Parc Scientifique de LuminyMarseille, France
| |
Collapse
|
3
|
Brain serotonin signaling does not determine sexual preference in male mice. PLoS One 2015; 10:e0118603. [PMID: 25706994 PMCID: PMC4338231 DOI: 10.1371/journal.pone.0118603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
It was reported recently that male mice lacking brain serotonin (5-HT) lose their preference for females (Liu et al., 2011, Nature, 472, 95–100), suggesting a role for 5-HT signaling in sexual preference. Regulation of sex preference by 5-HT lies outside of the well established roles in this behavior established for the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Presently, mice with a null mutation in the gene for tryptophan hydroxylase 2 (TPH2), which are depleted of brain 5-HT, were tested for sexual preference. When presented with inanimate (urine scents from male or estrous female) or animate (male or female mouse in estrus) sexual stimuli, TPH2-/- males show a clear preference for female over male stimuli. When a TPH2-/- male is offered the simultaneous choice between an estrous female and a male mouse, no sexual preference is expressed. However, when confounding behaviors that are seen among 3 mice in the same cage are controlled, TPH2-/- mice, like their TPH2+/+ counterparts, express a clear preference for female mice. Female TPH2-/- mice are preferred by males over TPH2+/+ females but this does not lead to increased pregnancy success. In fact, if one or both partners in a mating pair are TPH2-/- in genotype, pregnancy success rates are significantly decreased. Finally, expression of the VNO-specific cation channel TRPC2 and of CNGA2 in the MOE of TPH2-/- mice is normal, consistent with behavioral findings that sexual preference of TPH2-/- males for females is intact. In conclusion, 5-HT signaling in brain does not determine sexual preference in male mice. The use of pharmacological agents that are non-selective for the 5-HT neuronal system and that have serious adverse effects may have contributed historically to the stance that 5-HT regulates sexual behavior, including sex partner preference.
Collapse
|
4
|
Kennedy RCM, Menn FM, Healy L, Fecteau KA, Hu P, Bae J, Gee NA, Lasley BL, Zhao L, Chen J. Early life triclocarban exposure during lactation affects neonate rat survival. Reprod Sci 2014; 22:75-89. [PMID: 24803507 DOI: 10.1177/1933719114532844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triclocarban (3,4,4'-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure.
Collapse
Affiliation(s)
- Rebekah C M Kennedy
- Department of Public Health, The University of Tennessee, Knoxville, TN, USA
| | - Fu-Min Menn
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA
| | | | - Kellie A Fecteau
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, TN, USA
| | - Pan Hu
- Department of Nutrition, The University of Tennessee, Knoxville, TN, USA
| | - Jiyoung Bae
- Department of Nutrition, The University of Tennessee, Knoxville, TN, USA
| | - Nancy A Gee
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Bill L Lasley
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN, USA
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN, USA Department of Nutrition, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
5
|
Sharma R, Parkinson T, Kenyon P, Jenkinson C, Blair H. Uterine environment and early embryonic development in sheep. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. Monoamine oxidases in development. Cell Mol Life Sci 2013; 70:599-630. [PMID: 22782111 PMCID: PMC11113580 DOI: 10.1007/s00018-012-1065-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases (MAOs) are flavoproteins of the outer mitochondrial membrane that catalyze the oxidative deamination of biogenic and xenobiotic amines. In mammals there are two isoforms (MAO-A and MAO-B) that can be distinguished on the basis of their substrate specificity and their sensitivity towards specific inhibitors. Both isoforms are expressed in most tissues, but their expression in the central nervous system and their ability to metabolize monoaminergic neurotransmitters have focused MAO research on the functionality of the mature brain. MAO activities have been related to neurodegenerative diseases as well as to neurological and psychiatric disorders. More recently evidence has been accumulating indicating that MAO isoforms are expressed not only in adult mammals, but also before birth, and that defective MAO expression induces developmental abnormalities in particular of the brain. This review is aimed at summarizing and critically evaluating the new findings on the developmental functions of MAO isoforms during embryogenesis.
Collapse
Affiliation(s)
- Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Billett
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Astrid Borchert
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| |
Collapse
|
7
|
Cents RAM, Tiemeier H, Velders FP, Jaddoe VWV, Hofman A, Verhulst FC, Lambregtse-van den Berg MP, Hudziak JJ. Maternal smoking during pregnancy and child emotional problems: the relevance of maternal and child 5-HTTLPR genotype. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:289-97. [PMID: 22259195 DOI: 10.1002/ajmg.b.32026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/03/2012] [Indexed: 11/09/2022]
Abstract
Serotonin is involved in the development of neural circuits modulating emotional behavior. The short allele (s) of a polymorphism (5-HTTLPR) of the serotonin transporter gene is a risk factor for psychopathology in the presence of environmental stressors. Maternal smoking is associated with growth restriction of the human fetal brain and adverse effects of nicotine on the developing serotonin system have been documented. We hypothesized that maternal smoking interacts with both child and mother 5-HTTLPR genotype as a risk factor for later child emotional problems. In a sample of n = 1,529 mother-child dyads, smoking habits were assessed by questionnaires during pregnancy. Child emotional problems were measured by the Child Behavior Checklist at the child's age of 3 years. Maternal smoking during pregnancy significantly increased the risk for emotional problems in children carrying the s-allele; β = 0.24, P = 0.03 (mother-report), and β = 0.46, P = 0.001 (father-report). In children heterozygous at 5-HTTLPR and exposed to maternal prenatal smoking (n = 79) risk of emotional problems increased with each additional s-allele the mother carried. The associations between 5-HTTLPR and child emotional problems were not moderated by paternal prenatal smoking. These findings imply that the vulnerability for emotional problems in s-allele carriers may already originate in fetal life.
Collapse
Affiliation(s)
- Rolieke A M Cents
- The Generation R Study Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|