1
|
Marciniak A, Lewińska A, Wyrzykowski D, Żygowska J, Czaplewska P, Sikorska E, Szymańska A, Brasuń J. Copper binding by the cystatin C fragment. The role of histidine residues. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Korolenko TA, Shintyapina AB, Pupyshev AB, Akopyan AA, Russkikh GS, Dikovskaya MA, Vavilin VA, Zavjalov EL, Tikhonova MA, Amstislavskaya TG. The regulatory role of cystatin C in autophagy and neurodegeneration. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a dynamic cellular process involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. It is particularly important in neurons, which do not have a proliferative option for cellular repair. Autophagy has been shown to be suppressed in the striatum of a transgenic mouse model of Parkinson’s disease. Cystatin C is one of the potent regulators of autophagy. Changes in the expression and secretion of cystatin C in the brain have been shown in amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases, and in some animal models of neurodegeneration, thus proving a protective function of cystatin C. It has been suggested that cystatin C plays the primary role in amyloidogenesis and shows promise as a therapeutic agent for neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases). Cystatin C colocalizes with the amyloid β-protein in the brain during Alzheimer’s disease. Controlled expression of a cystatin C peptide has been proposed as a new approach to therapy for Alzheimer’s disease. In Parkinson’s disease, serum cystatin C levels can predict disease severity and cognitive dysfunction, although the exact involvement of cystatin C remains unclear. The aim: to study the role of cystatin C in neurodegeneration and evaluate the results in relation to the mechanism of autophagy. In our study on humans, a higher concentration of cystatin C was noted in cerebrospinal fluid than in serum; much lower concentrations were observed in other biological fluids (intraocular fluid, bile, and sweat). In elderly persons (61–80 years old compared to practically healthy people at 40–60 years of age), we revealed increased cystatin C levels both in serum and intraocular fluid. In an experiment on C57Bl/6J mice, cystatin C concentration was significantly higher in brain tissue than in the liver and spleen: an indication of an important function of this cysteine protease inhibitor in the brain. Using a transgenic mouse model of Parkinson’s disease (5 months old), we demonstrated a significant increase in osmotic susceptibility of brain lysosomes, depending on autophagy, while in a murine model of Alzheimer’s disease, this parameter did not differ from that in the appropriate control.
Collapse
Affiliation(s)
- T. A. Korolenko
- Scientific Research Institute of Physiology and Basic Medicine
| | - A. B. Shintyapina
- Scientific Research Institute of Molecular Biology and Biophysics, Federal Research Center for Basic and Translational Medicine
| | - A. B. Pupyshev
- Scientific Research Institute of Physiology and Basic Medicine
| | - A. A. Akopyan
- Scientific Research Institute of Physiology and Basic Medicine
| | - G. S. Russkikh
- Scientific Research Institute of Biochemistry, Federal Research Center for Basic and Translational Medicine
| | - M. A. Dikovskaya
- Scientific Research Institute of Physiology and Basic Medicine; S.N. Fedorov NMRC “MNTK “Eye Microsurgery”, Novosibirsk Branch
| | - V. A. Vavilin
- Scientific Research Institute of Molecular Biology and Biophysics, Federal Research Center for Basic and Translational Medicine; Institute of Cytology and Genetics, SB RAS
| | | | - M. A. Tikhonova
- Scientific Research Institute of Physiology and Basic Medicine; Novosibirsk State University
| | - T. G. Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine; Novosibirsk State University
| |
Collapse
|
3
|
Szymańska A, Marciniak A, Krzyżak E, Brasuń J. First studies on the interactions of the C-terminal cystatin C fragment 85–94 with Cu(II) ions. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1605065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Aneta Szymańska
- Department of Biomedical Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Edward Krzyżak
- Department of Inorganic Chemistry, Wrocław Medical University, Wrocław, Poland
| | - Justyna Brasuń
- Department of Inorganic Chemistry, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
4
|
Zeng Q, Huang Z, Wei L, Fang J, Lin K. Correlations of serum cystatin C level and gene polymorphism with vascular cognitive impairment after acute cerebral infarction. Neurol Sci 2019; 40:1049-1054. [PMID: 30805744 DOI: 10.1007/s10072-019-03777-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to explore the possible correlations of serum cystatin C level and cystatin C gene (CST3) polymorphism with vascular cognitive impairment in patients who had acute cerebral infarction. METHODS A total of 152 patients with acute cerebral infarction were recruited in this case-control study. Patients were divided into vascular cognitive impairment (VCI) group (n = 71) and cognitive impairment no dementia (CIND) group (n = 81). The serum concentrations of cystatin C were measured with immunoturbidimetric assay while the gene polymorphisms of CST3 were determined by technique polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS In the VCI group, serum cystatin C level was significantly higher than that in the control group. The frequency of the B allele was found to be higher in the VCI group as compared with that of the CIND group (18.5% vs 7.7%, p = 0.006). In logistic regression analysis, significant associations of VCI with high serum cystatin C level (OR 3.837 (1.176-12.520), p = 0.026) and CST3 B allele (OR 2.038 (1.048-3.963), p = 0.036) were also found. CONCLUSIONS A high cystatin C level and CST3 B allele confer risks for VCI after acute cerebral infarction. It is probable that measurement of the serum cystatin C level and detection of CST3 gene polymorphism would aid in the early diagnosis of VCI, but further studies are warranted.
Collapse
Affiliation(s)
- Qiong Zeng
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhihua Huang
- Shantou University Medical College, Shantou, China
| | - Liling Wei
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jingnian Fang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kun Lin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
5
|
Perlenfein TJ, Mehlhoff JD, Murphy RM. Insights into the mechanism of cystatin C oligomer and amyloid formation and its interaction with β-amyloid. J Biol Chem 2017; 292:11485-11498. [PMID: 28487367 DOI: 10.1074/jbc.m117.786558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
Cystatin C (CysC) is a versatile and ubiquitously-expressed member of the cysteine protease inhibitor family that is present at notably high concentrations in cerebrospinal fluid. Under mildly denaturing conditions, CysC forms inactive domain-swapped dimers. A destabilizing mutation, L68Q, increases the rate of domain-swapping and causes a fatal amyloid disease, hereditary cystatin C amyloid angiopathy. Wild-type (wt) CysC will also aggregate into amyloid fibrils under some conditions. Propagated domain-swapping has been proposed as the mechanism by which CysC fibrils grow. We present evidence that a CysC mutant, V57N, stabilized against domain-swapping, readily forms fibrils, contradicting the propagated domain-swapping hypothesis. Furthermore, in physiological buffer, wt CysC can form oligomers without undergoing domain-swapping. These non-swapped oligomers are identical in secondary structure to CysC monomers and completely retain protease inhibitory activity. However, unlike monomers or dimers, the oligomers bind fluorescent dyes that indicate they have characteristics of pre-amyloid aggregates. Although these oligomers appear to be a pre-amyloid assembly, they are slower than CysC monomers to form fibrils. Fibrillation of CysC therefore likely initiates from the monomer and does not require domain-swapping. The non-swapped oligomers likely represent a dead-end offshoot of the amyloid pathway and must dissociate to monomers prior to rearranging to amyloid fibrils. These prefibrillar CysC oligomers were potent inhibitors of aggregation of the Alzheimer's-related peptide, β-amyloid. This result illustrates an example where heterotypic interactions between pre-amyloid oligomers prevent the homotypic interactions that would lead to mature amyloid fibrils.
Collapse
Affiliation(s)
- Tyler J Perlenfein
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Jacob D Mehlhoff
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
6
|
Žerovnik E. Putative alternative functions of human stefin B (cystatin B): binding to amyloid-beta, membranes, and copper. J Mol Recognit 2016; 30. [PMID: 27577977 DOI: 10.1002/jmr.2562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
We describe studies performed thus far on stefin B from the family of cystatins as a model protein for folding and amyloid fibril formation studies. We also briefly mention our studies on aggregation of some of the missense EPM1 mutants of stefin B in cells, which mimic additional pathological traits (gain in toxic function) in selected patients with EPM1 disease. We collected data on the reported interactors of stefin B and discuss several hypotheses of possible cytosolic alternative functions.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia.,CipKeBip-Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| |
Collapse
|
7
|
Exploring the ‘aggregation-prone’ core of human Cystatin C: A structural study. J Struct Biol 2015; 191:272-80. [DOI: 10.1016/j.jsb.2015.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/21/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022]
|
8
|
Stanczykiewicz B, Jakubik-Witkowska M, Polanowski A, Trziszka T, Rymaszewska J. Procognitive Properties of Cysteine Protease Inhibitor – Ovocystatin in Alzheimer's Disease Mice Model. Eur Psychiatry 2015. [DOI: 10.1016/s0924-9338(15)30269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Friedman LG, Qureshi YH, Yu WH. Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease. Neurotherapeutics 2015; 12:94-108. [PMID: 25421002 PMCID: PMC4322072 DOI: 10.1007/s13311-014-0320-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative disorders are characterized by the aberrant accumulation of aggregate-prone proteins. Alzheimer's disease (AD) is associated with the buildup of β-amyloid peptides and tau, which aggregate into extracellular plaques and neurofibrillary tangles, respectively. Multiple studies have linked dysfunctional intracellular degradation mechanisms with AD pathogenesis. One such pathway is the autophagy-lysosomal system, which involves the delivery of large protein aggregates/inclusions and organelles to lysosomes through the formation, trafficking, and degradation of double-membrane structures known as autophagosomes. Converging data suggest that promoting autophagic degradation, either by inducing autophagosome formation or enhancing lysosomal digestion, provides viable therapeutic strategies. In this review, we discuss compounds that can augment autophagic clearance and may ameliorate disease-related pathology in cell and mouse models of AD. Canonical autophagy induction is associated with multiple signaling cascades; on the one hand, the best characterized is mammalian target of rapamycin (mTOR). Accordingly, multiple mTOR-dependent and mTOR-independent drugs that stimulate autophagy have been tested in preclinical models. On the other hand, there is a growing list of drugs that can enhance the later stages of autophagic flux by stabilizing microtubule-mediated trafficking, promoting lysosomal fusion, or bolstering lysosomal enzyme function. Although altering the different stages of autophagy provides many potential targets for AD therapeutic interventions, it is important to consider how autophagy drugs might also disturb the delicate balance between autophagosome formation and lysosomal degradation.
Collapse
Affiliation(s)
- Lauren G. Friedman
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer’s Disease Research, Columbia University, 630 West 168th St., New York, NY 10032 USA
| | - Yasir H. Qureshi
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer’s Disease Research, Columbia University, 630 West 168th St., New York, NY 10032 USA
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer’s Disease Research, Columbia University, 630 West 168th St., New York, NY 10032 USA
| |
Collapse
|
10
|
Tsiolaki PL, Hamodrakas SJ, Iconomidou VA. The pentapeptide LQVVR plays a pivotal role in human cystatin C fibrillization. FEBS Lett 2014; 589:159-64. [DOI: 10.1016/j.febslet.2014.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 02/03/2023]
|
11
|
Giuliano S, Agresta AM, De Palma A, Viglio S, Mauri P, Fumagalli M, Iadarola P, Montalbetti L, Salvini R, Bardoni A. Proteomic analysis of lymphoblastoid cells from Nasu-Hakola patients: a step forward in our understanding of this neurodegenerative disorder. PLoS One 2014; 9:e110073. [PMID: 25470616 PMCID: PMC4254282 DOI: 10.1371/journal.pone.0110073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022] Open
Abstract
Nasu-Hakola disease (NHD) is a recessively inherited rare disorder characterized by a combination of neuropsychiatric and bone symptoms which, while being unique to this disease, do not provide a rationale for the unambiguous identification of patients. These individuals, in fact, are likely to go unrecognized either because they are considered to be affected by other kinds of dementia or by fibrous dysplasia of bone. Given that dementia in NHD has much in common with Alzheimer’s disease and other neurodegenerative disorders, it cannot be expected to achieve the differential diagnosis of this disease without performing a genetic analysis. Under this scenario, the availability of protein biomarkers would indeed provide a novel context to facilitate interpretation of symptoms and to make the precise identification of this disease possible. The work here reported was designed to generate, for the first time, protein profiles of lymphoblastoid cells from NHD patients. Two-dimensional electrophoresis (2-DE) and nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) have been applied to all components of an Italian family (seven subjects) and to five healthy subjects included as controls. Comparative analyses revealed differences in the expression profile of 21 proteins involved in glucose metabolism and information pathways as well as in stress responses.
Collapse
Affiliation(s)
- Serena Giuliano
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy; Laboratoire d'excellence-Ion channel science and therapeutics, UMR, CNRS, Nice, France
| | - Anna Maria Agresta
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Antonella De Palma
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Pierluigi Mauri
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Lorenza Montalbetti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Polajnar M, Zavašnik-Bergant T, Škerget K, Vizovišek M, Vidmar R, Fonović M, Kopitar-Jerala N, Petrovič U, Navarro S, Ventura S, Žerovnik E. Human stefin B role in cell's response to misfolded proteins and autophagy. PLoS One 2014; 9:e102500. [PMID: 25047918 PMCID: PMC4105463 DOI: 10.1371/journal.pone.0102500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/18/2014] [Indexed: 11/30/2022] Open
Abstract
Alternative functions, apart from cathepsins inhibition, are being discovered for stefin B. Here, we investigate its role in vesicular trafficking and autophagy. Astrocytes isolated from stefin B knock-out (KO) mice exhibited an increased level of protein aggregates scattered throughout the cytoplasm. Addition of stefin B monomers or small oligomers to the cell medium reverted this phenotype, as imaged by confocal microscopy. To monitor the identity of proteins embedded within aggregates in wild type (wt) and KO cells, the insoluble cell lysate fractions were isolated and analyzed by mass spectrometry. Chaperones, tubulins, dyneins, and proteosomal components were detected in the insoluble fraction of wt cells but not in KO aggregates. In contrast, the insoluble fraction of KO cells exhibited increased levels of apolipoprotein E, fibronectin, clusterin, major prion protein, and serpins H1 and I2 and some proteins of lysosomal origin, such as cathepsin D and CD63, relative to wt astrocytes. Analysis of autophagy activity demonstrated that this pathway was less functional in KO astrocytes. In addition, synthetic dosage lethality (SDL) gene interactions analysis in Saccharomyces cerevisiae expressing human stefin B suggests a role in transport of vesicles and vacuoles These activities would contribute, directly or indirectly to completion of autophagy in wt astrocytes and would account for the accumulation of protein aggregates in KO cells, since autophagy is a key pathway for the clearance of intracellular protein aggregates.
Collapse
Affiliation(s)
- Mira Polajnar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tina Zavašnik-Bergant
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Katja Škerget
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Molecular and Biomedical Science, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Nataša Kopitar-Jerala
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Uroš Petrovič
- Department of Molecular and Biomedical Science, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Susanna Navarro
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- CipKeBip - Center of Excellence for integrated approaches in chemistry and biology of proteins, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
13
|
Liu Y, Li J, Wang Z, Yu Z, Chen G. Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to Cystatin C: possible involvement of the autophagy pathway. Mol Neurobiol 2014; 49:1043-54. [PMID: 24203677 DOI: 10.1007/s12035-013-8579-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Cystatin C (CysC) is a cysteine protease inhibitor and previous studies have demonstrated that increasing endogenous CysC expression has therapeutic implications on brain ischemia, Alzheimer's disease, and other neurodegenerative disorders. Our previous reports have demonstrated that the autophagy pathway was activated in the brain after experimental subarachnoid hemorrhage (SAH), and it may play a beneficial role in early brain injury (EBI). This study investigated the effects of exogenous CysC on EBI, cognitive dysfunction, and the autophagy pathway following experimental SAH. All SAH animals were subjected to injections of 0.3 ml fresh arterial, nonheparinized blood into the prechiasmatic cistern in 20 s. As a result, treatment with CysC with low and medial concentrations significantly ameliorated the degree of EBI when compared with vehicle-treated SAH rats. Microtubule-associated protein light chain-3 (LC3), a biomarker of autophagosomes, and beclin-1, a Bcl-2-interacting protein required for autophagy, were significantly increased in the cortex 48 h after SAH and were further up-regulated after CysC therapy. By ultrastructural observation, there was a marked increase in autophagosomes and autolysosomes in neurons of CysC-treated rats. Learning deficits induced by SAH were markedly alleviated after CysC treatment with medial doses. In conclusion, pre-SAH CysC administration may attenuate EBI and neurobehavioral dysfunction in this SAH model, possibly through activating autophagy pathway.
Collapse
Affiliation(s)
- Yizhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
14
|
Iliopoulos D, Gkretsi V, Tsezou A. Proteomics of osteoarthritic chondrocytes and cartilage. Expert Rev Proteomics 2014; 7:749-60. [DOI: 10.1586/epr.10.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Yousefzadeh G, Pezeshki S, Gholamhosseinian A, Nazemzadeh M, Shokoohi M. Plasma cystatin-C and risk of developing gestational diabetes mellitus. Diabetes Metab Syndr 2014; 8:33-35. [PMID: 24661756 DOI: 10.1016/j.dsx.2013.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIMS Cystatin-C, a low molecular weight protein, is effectively applied to evaluate the risk of developing renal insufficiency, cardiovascular disorders, neural defects, and inflammatory states. However, the role of this biomarker to monitor different pregnancy-related complications remains controversial. MATERIALS AND METHODS In the present study, we compared serum cystatin-C concentration between pregnant women with gestational diabetes mellitus (GDM) and healthy pregnant women to assess value of this biomarker to predict presence of GDM in these women. The study consisted of 60 consecutive pregnant women (30 women suffered GDM and 30 healthy pregnant women) enrolled in Afzalipour hospital in Kerman, Iran in 2012. Fasting blood sample was collected to perform measurements on plasma glucose, lipids, serum creatinine, and C-cystatin. Serum cystatin-C level was quantified using ELISA techniques. RESULTS Unadjusted comparison of cystatin-C level between the two study group showed no significant discrepancy between them so that the level of this biomarker in GDM group was 593.00±204.81 mg/L and in healthy group was 531.67±87.52 mg/L (P=0.137); while in multivariable linear model with the presence of associated variables, GDM was a main determinant for increased level of cystatin-C (standardized beta of 0.355, P-value of 0.014). CONCLUSION Gestational age was also identified to be another indicator of elevated cystatin-C. In final, our study showed that cystatin-C can be a reliable, useful and promising marker of GDM appearance in pregnant women.
Collapse
Affiliation(s)
| | - Sara Pezeshki
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahsa Nazemzadeh
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Shokoohi
- Research Center for Modeling in Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
16
|
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 2013; 124:307-21. [DOI: 10.3109/00207454.2013.833510] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Yadav VK, Chhikara N, Gill K, Dey S, Singh S, Yadav S. Three low molecular weight cysteine proteinase inhibitors of human seminal fluid: purification and enzyme kinetic properties. Biochimie 2013; 95:1552-1559. [PMID: 23619703 DOI: 10.1016/j.biochi.2013.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/09/2013] [Indexed: 02/07/2023]
Abstract
The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain-Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research.
Collapse
Affiliation(s)
- Vikash Kumar Yadav
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | | | | | |
Collapse
|
18
|
Szymańska A, Jankowska E, Orlikowska M, Behrendt I, Czaplewska P, Rodziewicz-Motowidło S. Influence of point mutations on the stability, dimerization, and oligomerization of human cystatin C and its L68Q variant. Front Mol Neurosci 2012; 5:82. [PMID: 22866027 PMCID: PMC3406405 DOI: 10.3389/fnmol.2012.00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/09/2012] [Indexed: 12/26/2022] Open
Abstract
Human cystatin C (hCC) is a small but very intriguing protein. Produced by all nucleated cells is found in almost all tissues and body fluids where, at physiological conditions, plays a role of a very potent inhibitor of cysteine proteases. Biologically active hCC is a monomeric protein but during cellular trafficking it forms dimers, transiently losing its inhibitory activity. In vitro, dimerization of cystatin C was observed for the mature protein during crystallization trials, revealing that the mechanism of this process is based on the three dimensional swapping of the protein domains. In our work we have focused on the impact of two proposed "hot spots" in cystatin C structure on its conformational stability. Encouraged by promising results of the theoretical calculations, we designed and produced several hCC hinge region point mutation variants that display a variety of conformational stability and propensity for dimerization and aggregation. A similar approach, i.e., rational mutagenesis, has been also applied to study the amyloidogenic L68Q variant to determine the contribution of hydrophobic interactions and steric effect on the stability of monomeric cystatin C. In this overview we would like to summarize the results of our studies. The impact of a particular mutation on the properties of the studied proteins will be presented in the context of their thermal and mechanical stability, in vitro dimerization tendency as well as the outcome of crystallization. Better understanding of the mechanism and, especially, factors affecting conformational stability of cystatin C and access to stable monomeric and dimeric versions of the protein opens new perspectives in explaining the role of dimers and the domain swapping process in hCC oligomerization, as well as designing potential inhibitors of this process.
Collapse
Affiliation(s)
- Aneta Szymańska
- Faculty of Chemistry, Department of Medicinal Chemistry, University of Gdańsk Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Inhibition of amyloid-beta peptide aggregation rescues the autophagic deficits in the TgCRND8 mouse model of Alzheimer disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1629-37. [PMID: 22800931 DOI: 10.1016/j.bbadis.2012.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 02/02/2023]
Abstract
scyllo-Inositol (SI) is an endogenous inositol stereoisomer known to inhibit aggregation and fibril formation of the amyloid-beta peptide (Aβ). Human clinical trials using SI to treat Alzheimer disease (AD) patients have shown potential benefits. In light of the growing therapeutic potential of SI, the objective of our study was to gain a more thorough understanding of the mechanism of action. In addition to Aβ plaques, a prominent pathological feature of AD is the extensive accumulation of autophagic vacuoles (AVs) suggesting dysfunction in this degradation pathway. Using the TgCRND8 mouse model for AD, we examined SI treatment effects on various components of the autophagic pathway. Autophagy impairment in TgCRND8 mice occurs in the latter stages of the pathway where AV-lysosome fusion and lysosomal degradation take place. SI treatment attenuated this impairment with a decrease in the size and the number of accumulated AVs. We propose that the beneficial effects of SI-Aβ interactions may resolve autophagic deficiencies in the AD brains.
Collapse
|
20
|
Dutta G, Barber DS, Zhang P, Doperalski NJ, Liu B. Involvement of dopaminergic neuronal cystatin C in neuronal injury-induced microglial activation and neurotoxicity. J Neurochem 2012; 122:752-63. [PMID: 22679891 DOI: 10.1111/j.1471-4159.2012.07826.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Factors released from injured dopaminergic (DA) neurons may trigger microglial activation and set in motion a vicious cycle of neuronal injury and inflammation that fuels progressive DA neurodegeneration in Parkinson's disease. In this study, using proteomic and immunoblotting analysis, we detected elevated levels of cystatin C in conditioned media (CM) from 1-methyl-4-phenylpyridinium and dieldrin-injured rat DA neuronal cells. Immunodepletion of cystatin C significantly reduced the ability of DA neuronal CM to induce activation of rat microglial cells as determined by up-regulation of inducible nitric oxide synthase, production of free radicals and release of proinflammatory cytokines as well as activated microglia-mediated DA neurotoxicity. Treatment of the cystatin C-containing CM with enzymes that remove O- and sialic acid-, but not N-linked carbohydrate moieties markedly reduced the ability of the DA neuronal CM to activate microglia. Taken together, these results suggest that DA neuronal cystatin C plays a role in the neuronal injury-induced microglial activation and neurotoxicity. These findings from the rat DA neuron-microglia in vitro model may help guide continued investigation to define the precise role of cystatin C in the complex interplay among neurons and glia in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Garima Dutta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
21
|
Szymańska A, Jankowska E, Orlikowska M, Behrendt I, Czaplewska P, Rodziewicz-Motowidło S. Influence of point mutations on the stability, dimerization, and oligomerization of human cystatin C and its L68Q variant. Front Mol Neurosci 2012. [PMID: 22866027 DOI: 10.3389/fnmol.2012.00082/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Human cystatin C (hCC) is a small but very intriguing protein. Produced by all nucleated cells is found in almost all tissues and body fluids where, at physiological conditions, plays a role of a very potent inhibitor of cysteine proteases. Biologically active hCC is a monomeric protein but during cellular trafficking it forms dimers, transiently losing its inhibitory activity. In vitro, dimerization of cystatin C was observed for the mature protein during crystallization trials, revealing that the mechanism of this process is based on the three dimensional swapping of the protein domains. In our work we have focused on the impact of two proposed "hot spots" in cystatin C structure on its conformational stability. Encouraged by promising results of the theoretical calculations, we designed and produced several hCC hinge region point mutation variants that display a variety of conformational stability and propensity for dimerization and aggregation. A similar approach, i.e., rational mutagenesis, has been also applied to study the amyloidogenic L68Q variant to determine the contribution of hydrophobic interactions and steric effect on the stability of monomeric cystatin C. In this overview we would like to summarize the results of our studies. The impact of a particular mutation on the properties of the studied proteins will be presented in the context of their thermal and mechanical stability, in vitro dimerization tendency as well as the outcome of crystallization. Better understanding of the mechanism and, especially, factors affecting conformational stability of cystatin C and access to stable monomeric and dimeric versions of the protein opens new perspectives in explaining the role of dimers and the domain swapping process in hCC oligomerization, as well as designing potential inhibitors of this process.
Collapse
Affiliation(s)
- Aneta Szymańska
- Faculty of Chemistry, Department of Medicinal Chemistry, University of Gdańsk Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
22
|
Polajnar M, Žerovnik E. Impaired autophagy: a link between neurodegenerative diseases and progressive myoclonus epilepsies. Trends Mol Med 2011; 17:293-300. [DOI: 10.1016/j.molmed.2011.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 02/22/2011] [Accepted: 02/25/2011] [Indexed: 01/29/2023]
|
23
|
Gauthier S, Kaur G, Mi W, Tizon B, Levy E. Protective mechanisms by cystatin C in neurodegenerative diseases. Front Biosci (Schol Ed) 2011; 3:541-54. [PMID: 21196395 DOI: 10.2741/s170] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegeneration occurs in acute pathological conditions such as stroke, ischemia, and head trauma and in chronic disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. While the cause of neuronal death is different and not always known in these varied conditions, hindrance of cell death would be beneficial in the prevention of, slowing of, or halting disease progression. Enhanced cystatin C (CysC) expression in these conditions caused a debate as to whether CysC up-regulation facilitates neurodegeneration or it is an endogenous neuroprotective attempt to prevent the progression of the pathology. However, recent in vitro and in vivo data have demonstrated that CysC plays protective roles via pathways that are dependent on inhibition of cysteine proteases, such as cathepsin B, or by induction of autophagy, induction of proliferation, and inhibition of amyloid-beta aggregation. Here we review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced under various conditions. These data suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
|
24
|
D'Adamio L. Role of cystatin C in neuroprotection and its therapeutic implications. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2163-5. [PMID: 20864683 DOI: 10.2353/ajpath.2010.100829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Luciano D'Adamio
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Choi S, Park SY, Jeong J, Cho E, Phark S, Lee M, Kwak D, Lim JY, Jung WW, Sul D. Identification of toxicological biomarkers of di(2-ethylhexyl) phthalate in proteins secreted by HepG2 cells using proteomic analysis. Proteomics 2010; 10:1831-46. [PMID: 20198640 DOI: 10.1002/pmic.200900674] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effects of di(2-ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 microM) for 24 or 48 h. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 microM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose- and time-dependent fashion. Proteomic analysis using two different pI ranges (4-7 and 6-9) and large size 2-DE revealed the presence of 2776 protein spots. A total of 35 (19 up- and 16 down-regulated) proteins were identified as biomarkers of DEHP by ESI-MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up- or down-regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin-1, and haptoglobin-related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP.
Collapse
Affiliation(s)
- Seonyoung Choi
- Graduate School of Medicine, Korea University, Sungbuk-Ku, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zerovnik E, Staniforth RA, Turk D. Amyloid fibril formation by human stefins: Structure, mechanism & putative functions. Biochimie 2010; 92:1597-607. [PMID: 20685229 DOI: 10.1016/j.biochi.2010.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/20/2010] [Indexed: 11/26/2022]
Abstract
Many questions in the field of protein aggregation to amyloid fibrils remain open. In this review we describe predominantly in vitro studies of oligomerization and amyloid fibril formation by human stefins A and B. In human stefin B amyloidogenesis in vitro we have observed some general and many specific properties of its prefibrillar oligomers and amyloid fibrils. One characteristic feature in common to stefins and cystatins (and possibly some other amyloid proteins) is domain-swapping. In addition to solution structure of the domain-swapped dimer of stefin A, we recently have determined 3D structure of stefin B tetramer, which proved to be composed from two domain-swapped dimers, whose interaction occurs by a proline switch in the loop surrounding the conserved Pro 74. Studying the mechanism of fibril formation by stefin B, we found that the nucleation and fibril elongation reactions have energies of activation (E(a)'s) in the range of proline isomerisation, strongly indicating importance of the Pro at site 74 and/or other prolines in the sequence. Correlation between toxicity of the prefibrillar oligomers and their interaction with acidic phospholipids was demonstrated. Stefin B was shown to interact with amyloid-beta peptide of Alzheimer's disease in an oligomer specific manner, both in vitro and in the cells. It also has been shown that endogenous stefin B (with E at site 31) but especially the EPM1 mutant R68X and Y31-stefin B variant, and to a lesser extent EPM1 mutant G4R, are prone to form aggregates in cells.
Collapse
Affiliation(s)
- Eva Zerovnik
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
27
|
Choi S, Park SY, Kwak D, Phark S, Lee M, Lim JY, Jung WW, Sul D. Proteomic analysis of proteins secreted by HepG2 cells treated with butyl benzyl phthalate. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1570-1585. [PMID: 20954082 DOI: 10.1080/15287394.2010.511583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteomic changes in proteins secreted by human hepatocellular carcinomas (HepG2) cells exposed to butyl benzyl phthalate (BBP) were evaluated. HepG2 cells were treated with three different concentrations of BBP (0, 10, or 25 μM) for 24 or 48 h. Following incubation, the cells were subjected to proteomic analysis using two different pI ranges (4-7 and 6-9) and large-size two-dimensional gel electrophoresis. Results showed resolution of a total of 2776 protein spots. Of these, 29, including 19 upregulated and 10 downregulated proteins, were identified by electrospray ionization-mass spectrometry-mass spectrometry (ESI-MS/MS). Among these, the identities of cystatin C, Rho guanine nucleotide dissociation inhibitor, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, heptaglobin-related protein, inter-alpha-trypsin inhibitor heavy chain H2, and electron transfer flavoprotein subunit beta were confirmed by Western blot analysis. These proteins were found to be involved in apoptosis, signaling, tumor progression, energy metabolism, and cell structure and motility. Therefore, these proteins have potential to be employed as biomarkers of BBP exposure and may be useful in understanding mechanisms underlying the adverse effects of BBP.
Collapse
Affiliation(s)
- Seonyoung Choi
- Department of Nanobiomedical Science, College of Advanced Science, Chung-Nam, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bernstein HG, Malone TM. Comment on "The emerging roles of cystatins in Alzheimer's disease". DOI 10.1002/bies.200900012. Bioessays 2009; 31:1004-5. [PMID: 19676077 DOI: 10.1002/bies.200900071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|