1
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
2
|
Larsson L, Kavanagh NM, Nguyen TVN, Castilho RM, Berglundh T, Giannobile WV. Influence of epigenetics on periodontitis and peri-implantitis pathogenesis. Periodontol 2000 2022; 90:125-137. [PMID: 35913702 DOI: 10.1111/prd.12453] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Periodontitis is a disease characterized by tooth-associated microbial biofilms that drive chronic inflammation and destruction of periodontal-supporting tissues. In some individuals, disease progression can lead to tooth loss. A similar condition can occur around dental implants in the form of peri-implantitis. The immune response to bacterial challenges is not only influenced by genetic factors, but also by environmental factors. Epigenetics involves the study of gene function independent of changes to the DNA sequence and its associated proteins, and represents a critical link between genetic and environmental factors. Epigenetic modifications have been shown to contribute to the progression of several diseases, including chronic inflammatory diseases like periodontitis and peri-implantitis. This review aims to present the latest findings on epigenetic influences on periodontitis and to discuss potential mechanisms that may influence peri-implantitis, given the paucity of information currently available.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nolan M Kavanagh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trang V N Nguyen
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine and Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William V Giannobile
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
The Selective Histone Deacetylase Inhibitor MI192 Enhances the Osteogenic Differentiation Efficacy of Human Dental Pulp Stromal Cells. Int J Mol Sci 2021; 22:ijms22105224. [PMID: 34069280 PMCID: PMC8156347 DOI: 10.3390/ijms22105224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
The use of human dental pulp stromal cells (hDPSCs) has gained increasing attention as an alternative stem cell source for bone tissue engineering. The modification of the cells' epigenetics has been found to play an important role in regulating differentiation, with the inhibition of histone deacetylases 3 (HDAC3) being linked to increased osteogenic differentiation. This study aimed to induce epigenetic reprogramming using the HDAC2 and 3 selective inhibitor, MI192 to promote hDPSCs osteogenic capacity for bone regeneration. MI192 treatment caused a time-dose-dependent change in hDPSC morphology and reduction in viability. Additionally, MI192 successfully augmented hDPSC epigenetic functionality, which resulted in increased histone acetylation and cell cycle arrest at the G2/M phase. MI192 pre-treatment exhibited a dose-dependent effect on hDPSCs alkaline phosphatase activity. Quantitative PCR and In-Cell Western further demonstrated that MI192 pre-treatment significantly upregulated hDPSCs osteoblast-related gene and protein expression (alkaline phosphatase, bone morphogenic protein 2, type I collagen and osteocalcin) during osteogenic differentiation. Importantly, MI192 pre-treatment significantly increased hDPSCs extracellular matrix collagen production and mineralisation. As such, for the first time, our findings show that epigenetic reprogramming with the HDAC2 and 3 selective inhibitor MI192 accelerates the osteogenic differentiation of hDPSCs, demonstrating the considerable utility of this MSCs engineering approach for bone augmentation strategies.
Collapse
|
4
|
The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 2021; 32:135-152. [PMID: 33860357 DOI: 10.1007/s00335-021-09870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mechanism, of which the main functions are stabilizing the transcription of genes and promoting genetic conservation. In animals, the direct molecular inducers of DNA methylation mainly include histone covalent modification and non-coding RNA, whereas the fundamental regulators of DNA methylation are genetic and environmental factors. As is well known, competition is present everywhere in life systems, and will finally strike a balance that is optimal for the animal's survival and reproduction. The same goes for the regulation of DNA methylation. Genetic and environmental factors, respectively, are responsible for the programmed and plasticity changes of DNA methylation, and keen competition exists between genetically influenced procedural remodeling and environmentally influenced plastic alteration. In this process, genetic and environmental factors collaboratively decide the methylation patterns of corresponding loci. DNA methylation alterations induced by environmental factors can be transgenerationally inherited, and exhibit the characteristic of Lamarckian inheritance. Further research on regulatory mechanisms and the environmental plasticity of DNA methylation will provide strong support for understanding the biological function and evolutionary effects of DNA methylation.
Collapse
|
5
|
Miele E, Po A, Mastronuzzi A, Carai A, Besharat ZM, Pediconi N, Abballe L, Catanzaro G, Sabato C, De Smaele E, Canettieri G, Di Marcotullio L, Vacca A, Mai A, Levrero M, Pfister SM, Kool M, Giangaspero F, Locatelli F, Ferretti E. Downregulation of miR-326 and its host gene β-arrestin1 induces pro-survival activity of E2F1 and promotes medulloblastoma growth. Mol Oncol 2020; 15:523-542. [PMID: 32920979 PMCID: PMC7858128 DOI: 10.1002/1878-0261.12800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Persistent mortality rates of medulloblastoma (MB) and severe side effects of the current therapies require the definition of the molecular mechanisms that contribute to tumor progression. Using cultured MB cancer stem cells and xenograft tumors generated in mice, we show that low expression of miR-326 and its host gene β-arrestin1 (ARRB1) promotes tumor growth enhancing the E2F1 pro-survival function. Our models revealed that miR-326 and ARRB1 are controlled by a bivalent domain, since the H3K27me3 repressive mark is found at their regulatory region together with the activation-associated H3K4me3 mark. High levels of EZH2, a feature of MB, are responsible for the presence of H3K27me3. Ectopic expression of miR-326 and ARRB1 provides hints into how their low levels regulate E2F1 activity. MiR-326 targets E2F1 mRNA, thereby reducing its protein levels; ARRB1, triggering E2F1 acetylation, reverses its function into pro-apoptotic activity. Similar to miR-326 and ARRB1 overexpression, we also show that EZH2 inhibition restores miR-326/ARRB1 expression, limiting E2F1 pro-proliferative activity. Our results reveal a new regulatory molecular axis critical for MB progression.
Collapse
Affiliation(s)
- Evelina Miele
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Natalia Pediconi
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Luana Abballe
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Claudia Sabato
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | | | - Alessandra Vacca
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Italy
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), France.,Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Felice Giangaspero
- Department of Radiological, Oncological and Pathological Science, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Maternal Infantile and Urological Sciences, Sapienza University, Rome, Italy
| | | |
Collapse
|
6
|
Li P, Sun X, Ma Z, Liu Y, Jin Y, Ge R, Hao L, Ma Y, Han S, Sun H, Zhang M, Li R, Li T, Shen L. Transcriptional Reactivation of OTX2, RX1 and SIX3 during Reprogramming Contributes to the Generation of RPE Cells from Human iPSCs. Int J Biol Sci 2016; 12:505-17. [PMID: 27019633 PMCID: PMC4807412 DOI: 10.7150/ijbs.14212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/16/2016] [Indexed: 01/12/2023] Open
Abstract
Directed differentiation of human induced pluripotent stem cells (iPSCs) into retinal pigmented epithelium (RPE) holds great promise in cell replacement therapy for patients suffering from degenerative eye diseases, including age-related macular degeneration (AMD). In this study, we generated iPSCs from human dermal fibroblasts (HDFs) by electroporation with episomal plasmid vectors encoding OCT4, SOX2, KLF4, L-MYC together with p53 suppression. Intriguingly, cell reprogramming resulted in a metastable transcriptional activation and selective demethylation of neural and retinal specification-associated genes, such as OTX2, RX1 and SIX3. In contrast, RPE progenitor genes were transcriptionally silent in HDFs and descendant iPSCs. Overexpression of OCT4 and SOX2 directly stimulated the expression of OTX2, RX1 and SIX3 in HDFs and iPSCs. Luciferase and chromatin immunoprecipitation (ChIP) assays further identified an OCT4- and two SOX2-binding sites located in the proximal promoter of OTX2. Histone acetylation and methylation on the local promoter also participated in the reactivation of OTX2. The transcriptional conversion of RX1 and SIX3 genes partially attributed to DNA demethylation. Subsequently, iPSCs were induced into the RPE cells displaying the characteristics of polygonal shapes and pigments, and expressing typical RPE cell markers. Taken together, our results establish readily efficient and safe protocols to produce iPSCs and iPSC-derived RPE cells, and underline that the reactivation of anterior neural transcription factor OTX2, eye field transcription factor RX1 and SIX3 in iPSCs is a feature of pluripotency acquisition and predetermines the potential of RPE differentiation.
Collapse
Affiliation(s)
- Peng Li
- 1. Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Xiaofeng Sun
- 2. Department of Histology and Embryology, Institute of Chinese Medicine, Hunan University of Chinese Medicine, Science Garden District of Hanpu, Changsha, Hunan, 410208, China
| | - Zhizhong Ma
- 3. Peking University Eye Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yinan Liu
- 1. Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Ying Jin
- 3. Peking University Eye Center, Peking University Third Hospital, Beijing, 100191, China
| | - Ruimin Ge
- 4. Lund Stem Cell Center, University Hospital, Lund University, Lund, 22242, Sweden
| | - Limin Hao
- 5. Beijing Cellonis Biotechnologies Co.Ltd, Zhongguancun Bio-Medicine Park, Beijing, 100191, China
| | - Yanling Ma
- 5. Beijing Cellonis Biotechnologies Co.Ltd, Zhongguancun Bio-Medicine Park, Beijing, 100191, China
| | - Shuo Han
- 1. Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Haojie Sun
- 1. Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Mingzhi Zhang
- 1. Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Ruizhi Li
- 1. Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Tao Li
- 6. Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Li Shen
- 1. Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| |
Collapse
|
7
|
Paino F, La Noce M, Tirino V, Naddeo P, Desiderio V, Pirozzi G, De Rosa A, Laino L, Altucci L, Papaccio G. Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 2014; 32:279-89. [PMID: 24105979 PMCID: PMC3963447 DOI: 10.1002/stem.1544] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/02/2013] [Indexed: 12/30/2022]
Abstract
Adult mesenchymal stem cells, such as dental pulp stem cells, are of great interest for cell-based tissue engineering strategies because they can differentiate into a variety of tissue-specific cells, above all, into osteoblasts. In recent years, epigenetic studies on stem cells have indicated that specific histone alterations and modifying enzymes play essential roles in cell differentiation. However, although several studies have reported that valproic acid (VPA)—a selective inhibitor of histone deacetylases (HDAC)—enhances osteoblast differentiation, data on osteocalcin expression—a late-stage marker of differentiation—are limited. We therefore decided to study the effect of VPA on dental pulp stem cell differentiation. A low concentration of VPA did not reduce cell viability, proliferation, or cell cycle profile. However, it was sufficient to significantly enhance matrix mineralization by increasing osteopontin and bone sialoprotein expression. In contrast, osteocalcin levels were decreased, an effect induced at the transcriptional level, and were strongly correlated with inhibition of HDAC2. In fact, HDAC2 silencing with shRNA produced a similar effect to that of VPA treatment on the expression of osteoblast-related markers. We conclude that VPA does not induce terminal differentiation of osteoblasts, but stimulates the generation of less mature cells. Moreover, specific suppression of an individual HDAC by RNA interference could enhance only a single aspect of osteoblast differentiation, and thus produce selective effects.
Collapse
Affiliation(s)
- Francesca Paino
- Dipartimento di Medicina Sperimentale, Sezione di Istologia (TERM Lab.), via L. Armanni, 5, Secondo Ateneo di Napoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kallestad L, Woods E, Christensen K, Gefroh A, Balakrishnan L, Milavetz B. Transcription and replication result in distinct epigenetic marks following repression of early gene expression. Front Genet 2013; 4:140. [PMID: 23914205 PMCID: PMC3728471 DOI: 10.3389/fgene.2013.00140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/04/2013] [Indexed: 12/18/2022] Open
Abstract
Simian virus 40 (SV40) early transcription is repressed when the product of early transcription, T-antigen, binds to its cognate regulatory sequence, Site I, in the promoter of the SV40 minichromosome. Because SV40 minichromosomes undergo replication and transcription potentially repression could occur during active transcription or during DNA replication. Since repression is frequently epigenetically marked by the introduction of specific forms of methylated histone H3, we characterized the methylation of H3 tails during transcription and replication in wild-type SV40 minichromosomes and mutant minichromosomes which did not repress T-antigen expression. While repressed minichromosomes following replication were clearly marked with H3K9me1 and H3K4me1, minichromosomes repressed during early transcription were not similarly marked. Instead repression of early transcription was marked by a significant reduction in the level of H3K9me2. The replication dependent introduction of H3K9me1 and H3K4me1 into wild-type SV40 minichromosomes was also observed when replication was inhibited with aphidicolin. The results indicate that the histone modifications associated with repression can differ significantly depending upon whether the chromatin being repressed is undergoing transcription or replication.
Collapse
Affiliation(s)
- Les Kallestad
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| | | | | | | | | | | |
Collapse
|
9
|
Leu YW, Huang THM, Hsiao SH. Epigenetic reprogramming of mesenchymal stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:195-211. [PMID: 22956503 DOI: 10.1007/978-1-4419-9967-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells of mesodermal origin that can be isolated from various sources and induced into different cell types. Although MSCs possess immune privilege and are more easily obtained than embryonic stem cells, their propensity to tumorigenesis has not been fully explored. Epigenomic changes in DNA methylation and chromatin structure have been hypothesized to be critical in the determination of lineage-specific differentiation and tumorigenesis of MSCs, but this has not been formally proven. We applied a targeted DNA methylation method to methylate a Polycomb group protein-governed gene, Trip10, in MSCs, which accelerated the cell fate determination of MSCs. In addition, targeted methylation of HIC1 and RassF1A, both tumor suppressor genes, transformed MSCs into tumor stem cell-like cells. This new method will allow better control of the differentiation of MSCs and their use in downstream applications.
Collapse
Affiliation(s)
- Yu-Wei Leu
- Department of Life Science, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | | | | |
Collapse
|
10
|
Li J, Zhao Z, Carter C, Ehrlich LIR, Bedford MT, Richie ER. Coactivator-associated arginine methyltransferase 1 regulates fetal hematopoiesis and thymocyte development. THE JOURNAL OF IMMUNOLOGY 2012; 190:597-604. [PMID: 23248263 DOI: 10.4049/jimmunol.1102513] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that methylates histones and transcriptional regulators. We previously reported that the absence of CARM1 partially blocks thymocyte differentiation at embryonic day 18.5 (E18.5). In this study, we find that reduced thymopoiesis in Carm1(-/-) mice is due to a defect in the fetal hematopoietic compartment rather than in the thymic stroma. To determine the cellular basis for impaired thymopoiesis, we examined the number and function of fetal liver (FL) and bone marrow cells. Despite markedly reduced cellularity of hematopoietic progenitors in E18.5 bone marrow, the number of long-term hematopoietic stem cells and downstream subsets was not reduced in Carm1(-/-) E14.5 or E18.5 FL. Nevertheless, competitive reconstitution assays revealed a deficit in the ability of Carm1(-/-) FL cells to contribute to hematopoiesis. Furthermore, impaired differentiation of Carm1(-/-) FL cells in a CARM1-sufficient host showed that CARM1 is required cell autonomously in hematopoietic cells. Coculture of Carm1(-/-) FL cells on OP9-DL1 monolayers showed that CARM1 is required for survival of hematopoietic progenitors under conditions that promote differentiation. Taken together, this report demonstrates that CARM1 is a key epigenetic regulator of hematopoiesis that affects multiple lineages at various stages of differentiation.
Collapse
Affiliation(s)
- Jia Li
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.
Collapse
|
12
|
Milavetz B, Kallestad L, Gefroh A, Adams N, Woods E, Balakrishnan L. Virion-mediated transfer of SV40 epigenetic information. Epigenetics 2012; 7:528-34. [PMID: 22507897 DOI: 10.4161/epi.20057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In eukaryotes, epigenetic information can be encoded in parental cells through modification of histones and subsequently passed on to daughter cells in a process known as transgenerational epigenetic regulation. Simian Virus 40 (SV40) is a well-characterized virus whose small circular DNA genome is organized into chromatin and, as a consequence, undergoes many of the same biological processes observed in cellular chromatin. In order to determine whether SV40 is capable of transgenerational epigenetic regulation, we have analyzed SV40 chromatin from minichromosomes and virions for the presence of modified histones using various ChIP techniques and correlated these modifications with specific biological effects on the SV40 life cycle. Our results demonstrate that, like its cellular counterpart, SV40 chromatin is capable of passing biologically relevant transgenerational epigenetic information between infections.
Collapse
Affiliation(s)
- Barry Milavetz
- Department of Biochemistry and Molecular Biology; University of North Dakota, Grand Forks, ND, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Lu J, Kong X, Luo C, Li KK. Application of epigenome-modifying small molecules in induced pluripotent stem cells. Med Res Rev 2012; 33:790-822. [PMID: 22581616 DOI: 10.1002/med.21265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent breakthroughs in generating induced pluripotent stem cells (iPSCs) using four defined factors have revealed the potential utility of stem cells in biological research and clinical applications. However, the low efficiency and slow kinetics of reprogramming related to producing these cells and underlying safety issues, such as viral integration and genetic and epigenetic abnormalities of iPSCs, hamper the further application of iPSCs in laboratory and clinical settings. Previous studies have suggested that reprogramming efficiency can be enhanced and that reprogramming kinetics can be accelerated by manipulating epigenetic status. Herein, we review recent studies on the application of epigenome-modifying small molecules in enhancing reprogramming and functionally replacing some reprogramming factors. We mainly focus on studies that have used small molecules to interfere with epigenome-modifying enzymes, such as DNA methyltransferase, histone acetyltransferase, and histone methyltransferase. The potential use of these small molecules in inducing iPSCs and new ways to identify small molecules of higher potency and fewer side effects are also discussed.
Collapse
Affiliation(s)
- Junyan Lu
- Center for Systems Biology, School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | | | | | | |
Collapse
|
14
|
Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012; 2012:184154. [PMID: 22550500 PMCID: PMC3328162 DOI: 10.1155/2012/184154] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/19/2011] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are small molecules that have important and pleiotropic effects on cell homeostasis. Under distinct developmental conditions, they can promote either self-renewal or differentiation of embryonic stem cells. In addition, they can promote directed differentiation of embryonic and tissue-specific stem cells along the neuronal, cardiomyocytic, and hepatic lineages. They have been used to facilitate embryo development following somatic cell nuclear transfer and induced pluripotent stem cell derivation by ectopic expression of pluripotency factors. In the latter method, these molecules not only increase effectiveness, but can also render the induction independent of the oncogenes c-Myc and Klf4. Here we review the molecular pathways that are involved in the functions of HDAC inhibitors on stem cell differentiation and reprogramming of somatic cells into pluripotency. Deciphering the mechanisms of HDAC inhibitor actions is very important to enable their exploitation for efficient and simple tissue regeneration therapies.
Collapse
|
15
|
Wilczek C, Chitta R, Woo E, Shabanowitz J, Chait BT, Hunt DF, Shechter D. Protein arginine methyltransferase Prmt5-Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs. J Biol Chem 2011; 286:42221-42231. [PMID: 22009756 PMCID: PMC3234966 DOI: 10.1074/jbc.m111.303677] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/17/2011] [Indexed: 12/20/2022] Open
Abstract
Histone proteins carry information contained in post-translational modifications. Eukaryotic cells utilize this histone code to regulate the usage of the underlying DNA. In the maturing oocytes and eggs of the frog Xenopus laevis, histones are synthesized in bulk in preparation for deposition during the rapid early developmental cell cycles. During this key developmental time frame, embryonic pluripotent chromatin is established. In the egg, non-chromatin-bound histones are complexed with storage chaperone proteins, including nucleoplasmin. Here we describe the identification and characterization of a complex of the protein arginine methyltransferase 5 (Prmt5) and the methylosome protein 50 (Mep50) isolated from Xenopus eggs that specifically methylates predeposition histones H2A/H2A.X-F and H4 and the histone chaperone nucleoplasmin on a conserved motif (GRGXK). We demonstrate that nucleoplasmin (Npm), an exceedingly abundant maternally deposited protein, is a potent substrate for Prmt5-Mep50 and is monomethylated and symmetrically dimethylated at Arg-187. Furthermore, Npm modulates Prmt5-Mep50 activity directed toward histones, consistent with a regulatory role for Npm in vivo. We show that H2A and nucleoplasmin methylation appears late in oogenesis and is most abundant in the laid egg. We hypothesize that these very abundant arginine methylations are constrained to pre-mid blastula transition events in the embryo and therefore may be involved in the global transcriptional repression found in this developmental time frame.
Collapse
Affiliation(s)
- Carola Wilczek
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Raghu Chitta
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Eileen Woo
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, New York 10065
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, New York 10065
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461.
| |
Collapse
|
16
|
Driskell I, Oda H, Blanco S, Nascimento E, Humphreys P, Frye M. The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO J 2011; 31:616-29. [PMID: 22117221 PMCID: PMC3273381 DOI: 10.1038/emboj.2011.421] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 10/27/2011] [Indexed: 12/03/2022] Open
Abstract
Keratinocyte-specific ablation of the histone H4K20 methyltransferase Setd8 reveals its essential role in embryonic and postnatal skin homeostasis. Molecularly, the c-myc target gene Setd8 regulates proliferation/differentiation by controlling p63 function. Setd8/PR-Set7/KMT5a-dependent mono-methylation of histone H4 at lysine 20 is essential for mitosis of cultured cells; yet, the functional roles of Setd8 in complex mammalian tissues are unknown. We use skin as a model system to explore how Setd8 may regulate cell division in vivo. Deletion of Setd8 in undifferentiated layers of the mouse epidermis impaired both proliferation and differentiation processes. Long-lived epidermal progenitor cells are lost in the absence of Setd8, leading to an irreversible loss of sebaceous glands and interfollicular epidermis. We show that Setd8 is a transcriptional target of c-Myc and an essential mediator of Myc-induced epidermal differentiation. Deletion of Setd8 in c-Myc-overexpressing skin blocks proliferation and differentiation and causes apoptosis. Increased apoptosis may be explained by our discovery that p63, an essential transcription factor for epidermal commitment is lost, while p53 is gained upon removal of Setd8. Both overexpression of p63 and deletion of p53 rescue Setd8-induced apoptosis. Thus, Setd8 is a crucial inhibitor of apoptosis in skin and its activity is essential for epidermal stem cell survival, proliferation and differentiation.
Collapse
Affiliation(s)
- Iwona Driskell
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
17
|
Kong J, Crissey MA, Funakoshi S, Kreindler JL, Lynch JP. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus. PLoS One 2011; 6:e18280. [PMID: 21494671 PMCID: PMC3071814 DOI: 10.1371/journal.pone.0018280] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/24/2011] [Indexed: 01/27/2023] Open
Abstract
Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm(2) ±343.5 to 508 Ohm*cm(2)±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled "Distinctive" cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5'-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes alters cell proliferation, barrier function, and differentiation. These altered cells represent a transitional cell type between normal squamous and columnar BE cells. The K14-Cdx2 mice represent a useful model to study progression from squamous epithelium to BE.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary Ann Crissey
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shinsuke Funakoshi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James L. Kreindler
- Division of Pulmonary Medicine, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - John P. Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Illi B, Colussi C, Rosati J, Spallotta F, Nanni S, Farsetti A, Capogrossi MC, Gaetano C. NO points to epigenetics in vascular development. Cardiovasc Res 2011; 90:447-56. [PMID: 21345806 DOI: 10.1093/cvr/cvr056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of epigenetic mechanisms important for embryonic vascular development and cardiovascular differentiation is still in its infancy. Although molecular analyses, including massive genome sequencing and/or in vitro/in vivo targeting of specific gene sets, has led to the identification of multiple factors involved in stemness maintenance or in the early processes of embryonic layers specification, very little is known about the epigenetic commitment to cardiovascular lineages. The object of this review will be to outline the state of the art in this field and trace the perspective therapeutic consequences of studies aimed at elucidating fundamental epigenetic networks. Special attention will be paid to the emerging role of nitric oxide in this field.
Collapse
Affiliation(s)
- Barbara Illi
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Neff AW, King MW, Mescher AL. Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration. Dev Dyn 2011; 240:979-89. [DOI: 10.1002/dvdy.22554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2010] [Indexed: 01/12/2023] Open
|