1
|
Heuberger L, Korpidou M, Guinart A, Doellerer D, López DM, Schoenenberger C, Milinkovic D, Lörtscher E, Feringa BL, Palivan CG. Photoreceptor-Like Signal Transduction Between Polymer-Based Protocells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413981. [PMID: 39491508 PMCID: PMC11756044 DOI: 10.1002/adma.202413981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Deciphering inter- and intracellular signaling pathways is pivotal for understanding the intricate communication networks that orchestrate life's dynamics. Communication models involving bottom-up construction of protocells are emerging but often lack specialized compartments sufficiently robust and hierarchically organized to perform spatiotemporally defined signaling. Here, the modular construction of communicating polymer-based protocells designed to mimic the transduction of information in retinal photoreceptors is presented. Microfluidics is used to generate polymeric protocells subcompartmentalized by specialized artificial organelles. In one protocell population, light triggers artificial organelles with membrane-embedded photoresponsive rotary molecular motors to set off a sequence of reactions starting with the release of encapsulated signaling molecules into the lumen. Intercellular communication is mediated by signal transfer across membranes to protocells containing catalytic artificial organelles as subcompartments, whose signal conversion can be modulated by environmental calcium. Signal propagation also requires selective permeability of the diverse compartments. By segregating artificial organelles in distinct protocells, a sequential chain of reactions mediating intercellular communication is created that is further modulated by adding extracellular messengers. This connective behavior offers the potential for a deeper understanding of signaling pathways and faster integration of proto- and living cells, with the unique advantage of controlling each step by bio-relevant signals.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of ChemistryUniversity of BaselBasel4002Switzerland
| | - Maria Korpidou
- Department of ChemistryUniversity of BaselBasel4002Switzerland
| | - Ainoa Guinart
- Faculty of Science and EngineeringStratingh Institute for ChemistryUniversity of GroningenAG Groningen9747The Netherlands
| | - Daniel Doellerer
- Faculty of Science and EngineeringStratingh Institute for ChemistryUniversity of GroningenAG Groningen9747The Netherlands
| | | | | | | | - Emanuel Lörtscher
- IBM Research Europe–ZürichSäumerstrasse 4Rüschlikon8803Switzerland
- NCCR – Molecular Systems EngineeringMattenstrasse 22Basel4002Switzerland
| | - Ben L. Feringa
- Faculty of Science and EngineeringStratingh Institute for ChemistryUniversity of GroningenAG Groningen9747The Netherlands
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselBasel4002Switzerland
- NCCR – Molecular Systems EngineeringMattenstrasse 22Basel4002Switzerland
- Swiss Nanoscience Institute (SNI)University of BaselKlingelbergstrasse 80Basel4056Switzerland
| |
Collapse
|
2
|
Kojima K, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y, Yamashita T. Convergent mechanism underlying the acquisition of vertebrate scotopic vision. J Biol Chem 2024; 300:107175. [PMID: 38499150 PMCID: PMC11007431 DOI: 10.1016/j.jbc.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
High sensitivity of scotopic vision (vision in dim light conditions) is achieved by the rods' low background noise, which is attributed to a much lower thermal activation rate (kth) of rhodopsin compared with cone pigments. Frogs and nocturnal geckos uniquely possess atypical rods containing noncanonical cone pigments that exhibit low kth, mimicking rhodopsin. Here, we investigated the convergent mechanism underlying the low kth of rhodopsins and noncanonical cone pigments. Our biochemical analysis revealed that the kth of canonical cone pigments depends on their absorption maximum (λmax). However, rhodopsin and noncanonical cone pigments showed a substantially lower kth than predicted from the λmax dependency. Given that the λmax is inversely proportional to the activation energy of the pigments in the Hinshelwood distribution-based model, our findings suggest that rhodopsin and noncanonical cone pigments have convergently acquired low frequency of spontaneous-activation attempts, including thermal fluctuations of the protein moiety, in the molecular evolutionary processes from canonical cone pigments, which contributes to highly sensitive scotopic vision.
Collapse
Affiliation(s)
- Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan; Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Saha A, Zuniga J, Mian K, Zhai H, Derr PJ, Hoon M, Sinha R. Regional variation in the organization and connectivity of the first synapse in the primate night vision pathway. iScience 2023; 26:108113. [PMID: 37915604 PMCID: PMC10616377 DOI: 10.1016/j.isci.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Sensitivity of primate daylight vision varies across the visual field. This is attributed to regional variations in cone photoreceptor density and synaptic connectivity of the underlying circuitry. In contrast, we have limited understanding of how synapse organization of the primate night vision pathway changes across space. Using serial electron microscopy, we reconstructed the first synapse of the night vision pathway between rod photoreceptors and second-order neurons, at multiple locations from the central part of the primate retina, fovea, to the periphery. We find that most facets of the rod synapse connectivity vary across retinal regions. However, rod synaptic divergence and convergence patterns do not change in the same manner across locations. Moreover, patterns of rod synapse organization are tightly correlated with photoreceptor density. Such regional heterogeneities revise the connectivity diagram of the primate rod synapse which will shape synapse function and sensitivity of the night vision pathway across visual space.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Juan Zuniga
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Kainat Mian
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Haoshen Zhai
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Paul J. Derr
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
4
|
Bocchero U, Pahlberg J. Origin of Discrete and Continuous Dark Noise in Rod Photoreceptors. eNeuro 2023; 10:ENEURO.0390-23.2023. [PMID: 37973380 PMCID: PMC10687842 DOI: 10.1523/eneuro.0390-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The detection of a single photon by a rod photoreceptor is limited by two sources of physiological noise, called discrete and continuous noise. Discrete noise occurs as intermittent current deflections with a waveform very similar to that of the single-photon response to real light and is thought to be produced by spontaneous activation of rhodopsin. Continuous noise occurs as random and continuous fluctuations in outer-segment current and is usually attributed to some intermediate in the phototransduction cascade. To confirm the origin of these noise sources, we have recorded from retinas of mouse lines with rods having reduced levels of rhodopsin, transducin, or phosphodiesterase. We show that the rate of discrete noise is diminished in proportion to the decrease in rhodopsin concentration, and that continuous noise is independent of transducin concentration but clearly elevated when the level of phosphodiesterase is reduced. Our experiments provide new molecular evidence that discrete noise is indeed produced by rhodopsin itself, and that continuous noise is generated by spontaneous activation of phosphodiesterase resulting in random fluctuations in outer-segment current.
Collapse
Affiliation(s)
- Ulisse Bocchero
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510
| | - Johan Pahlberg
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510
| |
Collapse
|
5
|
Baldwin RW, Liu R, Almatrafi M, Asari V, Hirakawa K. Time-Ordered Recent Event (TORE) Volumes for Event Cameras. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:2519-2532. [PMID: 35503820 DOI: 10.1109/tpami.2022.3172212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Event cameras are an exciting, new sensor modality enabling high-speed imaging with extremely low-latency and wide dynamic range. Unfortunately, most machine learning architectures are not designed to directly handle sparse data, like that generated from event cameras. Many state-of-the-art algorithms for event cameras rely on interpolated event representations-obscuring crucial timing information, increasing the data volume, and limiting overall network performance. This paper details an event representation called Time-Ordered Recent Event (TORE) volumes. TORE volumes are designed to compactly store raw spike timing information with minimal information loss. This bio-inspired design is memory efficient, computationally fast, avoids time-blocking (i.e., fixed and predefined frame rates), and contains "local memory" from past data. The design is evaluated on a wide range of challenging tasks (e.g., event denoising, image reconstruction, classification, and human pose estimation) and is shown to dramatically improve state-of-the-art performance. TORE volumes are an easy-to-implement replacement for any algorithm currently utilizing event representations.
Collapse
|
6
|
Salman A, Kantor A, McClements ME, Marfany G, Trigueros S, MacLaren RE. Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics 2022; 14:1842. [PMID: 36145593 PMCID: PMC9503525 DOI: 10.3390/pharmaceutics14091842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool have revolutionized the field of molecular biology and generated excitement for its potential to treat a wide range of human diseases. As a gene therapy target, the retina offers many advantages over other tissues because of its surgical accessibility and relative immunity privilege due to its blood-retinal barrier. These features explain the large advances made in ocular gene therapy over the past decade, including the first in vivo clinical trial using CRISPR gene-editing reagents. Although viral vector-mediated therapeutic approaches have been successful, they have several shortcomings, including packaging constraints, pre-existing anti-capsid immunity and vector-induced immunogenicity, therapeutic potency and persistence, and potential genotoxicity. The use of nanomaterials in the delivery of therapeutic agents has revolutionized the way genetic materials are delivered to cells, tissues, and organs, and presents an appealing alternative to bypass the limitations of viral delivery systems. In this review, we explore the potential use of non-viral vectors as tools for gene therapy, exploring the latest advancements in nanotechnology in medicine and focusing on the nanoparticle-mediated delivery of CRIPSR genetic cargo to the retina.
Collapse
Affiliation(s)
- Ahmed Salman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ariel Kantor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Gemma Marfany
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- CIBERER, University of Barcelona, 08007 Barcelona, Spain
| | - Sonia Trigueros
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
7
|
Yan J, Li Y, Zhang T, Shen Y. Numb deficiency impairs retinal structure and visual function in mice. Exp Eye Res 2022; 219:109066. [DOI: 10.1016/j.exer.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
8
|
Choi S, Jang J, Kim MS, Kim ND, Kwag J, Wang G. Flexible Neural Network Realized by the Probabilistic SiO x Memristive Synaptic Array for Energy-Efficient Image Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104773. [PMID: 35170246 PMCID: PMC9009121 DOI: 10.1002/advs.202104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The human brain's neural networks are sparsely connected via tunable and probabilistic synapses, which may be essential for performing energy-efficient cognitive and intellectual functions. In this sense, the implementation of a flexible neural network with probabilistic synapses is a first step toward realizing the ultimate energy-efficient computing framework. Here, inspired by the efficient threshold-tunable and probabilistic rod-to-rod bipolar synapses in the human visual system, a 16 × 16 crossbar array comprising the vertical form of gate-tunable probabilistic SiOx memristive synaptic barristor utilizing the Si/graphene heterojunction is designed and fabricated. Controllable stochastic switching dynamics in this array are achieved via various input voltage pulse schemes. In particular, the threshold tunability via electrostatic gating enables the efficient in situ alteration of the probabilistic switching activation (PAct ) from 0 to 1.0, and can even modulate the degree of the PAct change. A drop-connected algorithm based on the PAct is constructed and used to successfully classify the shapes of several fashion items. The suggested approach can decrease the learning energy by up to ≈2,116 times relative to that of the conventional all-to-all connected network while exhibiting a high recognition accuracy of ≈93 %.
Collapse
Affiliation(s)
- Sanghyeon Choi
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jingon Jang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Min Seob Kim
- Institute of Advanced Composite MaterialsKorea Institute of Science and Technology92 Chudong‐ro, Bongdong‐eupWanju‐gunJeollabuk‐do55324Republic of Korea
| | - Nam Dong Kim
- Institute of Advanced Composite MaterialsKorea Institute of Science and Technology92 Chudong‐ro, Bongdong‐eupWanju‐gunJeollabuk‐do55324Republic of Korea
| | - Jeehyun Kwag
- Department of Brain and Cognitive EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Department of Integrative Energy EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| |
Collapse
|
9
|
Ganczer A, Szarka G, Balogh M, Hoffmann G, Tengölics ÁJ, Kenyon G, Kovács-Öller T, Völgyi B. Transience of the Retinal Output Is Determined by a Great Variety of Circuit Elements. Cells 2022; 11:cells11050810. [PMID: 35269432 PMCID: PMC8909309 DOI: 10.3390/cells11050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) encrypt stimulus features of the visual scene in action potentials and convey them toward higher visual centers in the brain. Although there are many visual features to encode, our recent understanding is that the ~46 different functional subtypes of RGCs in the retina share this task. In this scheme, each RGC subtype establishes a separate, parallel signaling route for a specific visual feature (e.g., contrast, the direction of motion, luminosity), through which information is conveyed. The efficiency of encoding depends on several factors, including signal strength, adaptational levels, and the actual efficacy of the underlying retinal microcircuits. Upon collecting inputs across their respective receptive field, RGCs perform further analysis (e.g., summation, subtraction, weighting) before they generate the final output spike train, which itself is characterized by multiple different features, such as the number of spikes, the inter-spike intervals, response delay, and the rundown time (transience) of the response. These specific kinetic features are essential for target postsynaptic neurons in the brain in order to effectively decode and interpret signals, thereby forming visual perception. We review recent knowledge regarding circuit elements of the mammalian retina that participate in shaping RGC response transience for optimal visual signaling.
Collapse
Affiliation(s)
- Alma Ganczer
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Márton Balogh
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Jonatán Tengölics
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Garrett Kenyon
- Los Alamos National Laboratory, Computer & Computational Science Division, Los Alamos, NM 87545, USA;
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
10
|
Kojima K, Matsutani Y, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y, Yamashita T. Evolutionary adaptation of visual pigments in geckos for their photic environment. SCIENCE ADVANCES 2021; 7:eabj1316. [PMID: 34597144 PMCID: PMC10938493 DOI: 10.1126/sciadv.abj1316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Vertebrates generally have a single type of rod for scotopic vision and multiple types of cones for photopic vision. Noteworthily, nocturnal geckos transmuted ancestral photoreceptor cells into rods containing not rhodopsin but cone pigments, and, subsequently, diurnal geckos retransmuted these rods into cones containing cone pigments. High sensitivity of scotopic vision is underlain by the rod’s low background noise, which originated from a much lower spontaneous activation rate of rhodopsin than of cone pigments. Here, we revealed that nocturnal gecko cone pigments decreased their spontaneous activation rates to mimic rhodopsin, whereas diurnal gecko cone pigments recovered high rates similar to those of typical cone pigments. We also identified amino acid residues responsible for the alterations of the spontaneous activation rates. Therefore, we concluded that the switch between diurnality and nocturnality in geckos required not only morphological transmutation of photoreceptors but also adjustment of the spontaneous activation rates of visual pigments.
Collapse
Affiliation(s)
- Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Matsutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
12
|
Russell DF, Warnock TC, Zhang W, Rogers DE, Neiman LL. Large-Scale Convergence of Receptor Cell Arrays Onto Afferent Terminal Arbors in the Lorenzinian Electroreceptors of Polyodon. Front Neuroanat 2020; 14:50. [PMID: 33192338 PMCID: PMC7604333 DOI: 10.3389/fnana.2020.00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Certain sensory receptors contain many transducers, converging onto few afferents. Convergence creates star-topology neural networks, of iterative parallel organization, that may yield special functional properties. We quantitated large-scale convergence in electroreceptors on the rostrum of preadult paddlefish, Polyodon spathula (Acipenseriforme vertebrates), and analyzed the afferent terminal branching underlying the convergence. From neurophysiological mapping, a recorded afferent innervated 23.3 ± 9.1 (range 6-45) ampullary organs, and innervated every ampullary organ within the receptive field's sharp boundary. Ampullary organs each contained ∼665 Lorenzinian receptor cells, from imaging and modeling. We imaged three serial types of afferent branching at electroreceptors, after immunofluorescent labeling for neurite filaments, glial sheaths, or nodal ion channels, or by DiI tracing. (i) Myelinated tree: Each of 3.08 ± 0.51 (2-4) parallel afferents from a cranial nerve (ALLn) entered a receptive field from deeper tissue, then branched into a laminar tree of large myelinated dendrites, parallel to the skin, that branched radially until ∼9 extremities with heminodes, which were candidate sites of spike encoders. (ii) Inline transition: Each myelinated extremity led distally into local unmyelinated arbors originating at inline branching structures covered by terminal (satellite) glia. The unmyelinated transition zones included globular afferent modules, 4-6 microns wide, from which erupted fine fascicles of parallel submicron neurites, a possibly novel type of neuronal branching. The neurite fascicles formed loose bundles projecting ∼105 microns distally to innervate local groups of ∼3 adjacent ampullary organs. (iii) Radial arbors: Receptor cells in an electrosensory neuroepithelium covering the basal pole of each ampullary organ were innervated by bouton endings of radial neurites, unmyelinated and submicron, forming a thin curviplanar lamina distal to the lectin+ basal lamina. The profuse radial neurites diverged from thicker (∼2 micron) basolateral trunks. Overall, an average Polyodon electroreceptor formed a star topology array of ∼9 sensor groups. Total convergence ratios were 15,495 ± 6,052 parallel receptor cells per afferent per mean receptive field, assuming 100% innervation. Large-scale convergence likely increases the signal-to-noise ratio (SNR) of stimulus encoding into spiking afferent output, increasing receiver sensitivity. Unmyelinated arbors may also regenerate and repair the afferent innervation of ampullary organs. LSID: urn:lsid:zoobank.org:act:09BCF04C-3C3C-4B6C-9DC9-A2BF43087369.
Collapse
Affiliation(s)
- David F Russell
- Department of Biological Sciences, Ohio University, Athens, OH, United States.,Department of Physics and Astronomy, Ohio University, Athens, OH, United States.,Neuroscience Program, Ohio University, Athens, OH, United States
| | - Thomas C Warnock
- Department of Physics and Astronomy, Ohio University, Athens, OH, United States
| | - Wenjuan Zhang
- Honors Tutorial College, Ohio University, Athens, OH, United States
| | - Desmon E Rogers
- Department of Physics and Astronomy, Ohio University, Athens, OH, United States
| | - Lilia L Neiman
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| |
Collapse
|
13
|
Lenahan C, Sanghavi R, Huang L, Zhang JH. Rhodopsin: A Potential Biomarker for Neurodegenerative Diseases. Front Neurosci 2020; 14:326. [PMID: 32351353 PMCID: PMC7175229 DOI: 10.3389/fnins.2020.00326] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Retinal alterations have recently been associated with numerous neurodegenerative diseases. Rhodopsin is a G-protein coupled receptor found in the rod cells of the retina. As a biomarker associated with retinal thinning and degeneration, it bears potential in the early detection and monitoring of several neurodegenerative diseases. In this review article, we summarize the findings of correlations between rhodopsin and several neurodegenerative disorders as well as the potential of a novel technique, cSLO, in the quantification of rhodopsin.
Collapse
Affiliation(s)
- Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Rajvee Sanghavi
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Lei Huang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
14
|
Leslie CE, Rosencrans RF, Walkowski W, Gordon WC, Bazan NG, Ryan MJ, Farris HE. Reproductive State Modulates Retinal Sensitivity to Light in Female Túngara Frogs. Front Behav Neurosci 2020; 13:293. [PMID: 32076402 PMCID: PMC6985269 DOI: 10.3389/fnbeh.2019.00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Visual cues are often a vital part of animal communication and courtship. While a plethora of studies have focused on the role that hormones play in acoustic communication of anurans, relatively few have explored hormonal modulation of vision in these animals. Much of what we do know comes from behavioral studies, which show that a frog’s hormonal state can significantly affect both its visual behavior and mating decisions. However, to fully understand how frogs use visual cues to make these mating decisions, we must first understand how their visual system processes these cues, and how hormones affect these processes. To do this, we performed electroretinograms (ERGs) to measure retinal sensitivity of túngara frogs (Physalaemus pustulosus), a neotropical species whose mating behavior includes previously described visual cues. To determine the effect of hormonal state on visual sensitivity, ERGs were recorded under scotopic and photopic conditions in frogs that were either non-reproductive or hormone-treated with human chorionic gonadotropin (hCG) prior to testing. Additionally, measurements of optical anatomy determined how túngara frog eye and retina morphology related to physiological sensitivity. As expected, we found that both sexes display higher visual sensitivity under scotopic conditions compared to photopic conditions. However, hormone injections significantly increased retinal sensitivity of females under scotopic conditions. These results support the hypothesis that hormonal modulation of neural mechanisms, such as those mediating visually guided reproductive behavior in this species, include modulation of the receptor organ: the retina. Thus, our data serve as a starting point for elucidating the mechanism of hormonal modulation of visual sensitivity.
Collapse
Affiliation(s)
- Caitlin E Leslie
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Robert F Rosencrans
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - Whitney Walkowski
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - William C Gordon
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - Michael J Ryan
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Smithsonian Tropical Research Institute, Balboa, Panama
| | - Hamilton E Farris
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Otorhinolaryngology, Louisiana State University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
15
|
Sato K, Yamashita T, Kojima K, Sakai K, Matsutani Y, Yanagawa M, Yamano Y, Wada A, Iwabe N, Ohuchi H, Shichida Y. Pinopsin evolved as the ancestral dim-light visual opsin in vertebrates. Commun Biol 2018; 1:156. [PMID: 30302400 PMCID: PMC6167363 DOI: 10.1038/s42003-018-0164-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Pinopsin is the opsin most closely related to vertebrate visual pigments on the phylogenetic tree. This opsin has been discovered among many vertebrates, except mammals and teleosts, and was thought to exclusively function in their brain for extraocular photoreception. Here, we show the possibility that pinopsin also contributes to scotopic vision in some vertebrate species. Pinopsin is distributed in the retina of non-teleost fishes and frogs, especially in their rod photoreceptor cells, in addition to their brain. Moreover, the retinal chromophore of pinopsin exhibits a thermal isomerization rate considerably lower than those of cone visual pigments, but comparable to that of rhodopsin. Therefore, pinopsin can function as a rhodopsin-like visual pigment in the retinas of these lower vertebrates. Since pinopsin diversified before the branching of rhodopsin on the phylogenetic tree, two-step adaptation to scotopic vision would have occurred through the independent acquisition of pinopsin and rhodopsin by the vertebrate lineage.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| | - Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuki Matsutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Yumiko Yamano
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
- Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
16
|
Walter RB, Boswell M, Chang J, Boswell WT, Lu Y, Navarro K, Walter SM, Walter DJ, Salinas R, Savage M. Waveband specific transcriptional control of select genetic pathways in vertebrate skin (Xiphophorus maculatus). BMC Genomics 2018; 19:355. [PMID: 29747585 PMCID: PMC5946439 DOI: 10.1186/s12864-018-4735-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
Background Evolution occurred exclusively under the full spectrum of sunlight. Conscription of narrow regions of the solar spectrum by specific photoreceptors suggests a common strategy for regulation of genetic pathways. Fluorescent light (FL) does not possess the complexity of the solar spectrum and has only been in service for about 60 years. If vertebrates evolved specific genetic responses regulated by light wavelengths representing the entire solar spectrum, there may be genetic consequences to reducing the spectral complexity of light. Results We utilized RNA-Seq to assess changes in the transcriptional profiles of Xiphophorus maculatus skin after exposure to FL (“cool white”), or narrow wavelength regions of light between 350 and 600 nm (i.e., 50 nm or 10 nm regions, herein termed “wavebands”). Exposure to each 50 nm waveband identified sets of genes representing discrete pathways that showed waveband specific transcriptional modulation. For example, 350–400 or 450–500 nm waveband exposures resulted in opposite regulation of gene sets marking necrosis and apoptosis (i.e., 350–400 nm; necrosis suppression, apoptosis activation, while 450–500 nm; apoptosis suppression, necrosis activation). Further investigation of specific transcriptional modulation employing successive 10 nm waveband exposures between 500 and 550 nm showed; (a) greater numbers of genes may be transcriptionally modulated after 10 nm exposures, than observed for 50 nm or FL exposures, (b) the 10 nm wavebands induced gene sets showing greater functional specificity than 50 nm or FL exposures, and (c) the genetic effects of FL are primarily due to 30 nm between 500 and 530 nm. Interestingly, many genetic pathways exhibited completely opposite transcriptional effects after different waveband exposures. For example, the epidermal growth factor (EGF) pathway exhibits transcriptional suppression after FL exposure, becomes highly active after 450–500 nm waveband exposure, and again, exhibits strong transcriptional suppression after exposure to the 520–530 nm waveband. Conclusions Collectively, these results suggest one may manipulate transcription of specific genetic pathways in skin by exposure of the intact animal to specific wavebands of light. In addition, we identify genes transcriptionally modulated in a predictable manner by specific waveband exposures. Such genes, and their regulatory elements, may represent valuable tools for genetic engineering and gene therapy protocols. Electronic supplementary material The online version of this article (10.1186/s12864-018-4735-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronald B Walter
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA.
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Jordan Chang
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - William T Boswell
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Kaela Navarro
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Sean M Walter
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Dylan J Walter
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Raquel Salinas
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
17
|
Ex Vivo Functional Evaluation of Synaptic Transmission from Rods to Rod Bipolar Cells in Mice. Methods Mol Biol 2018; 1753:203-216. [PMID: 29564791 DOI: 10.1007/978-1-4939-7720-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Mice have been widely used as a model organism to study mechanisms of phototransduction and synaptic transmission in the retina. Genetic manipulations and electrophysiological techniques for analysis of photoreceptor and rod bipolar cell function in mice are uniquely advanced. Here, we describe a set of biochemical and electrophysiological techniques for evaluation of synaptic transmission at the rod-rod bipolar cell synapse, which represents the first and key step in the processing of dim-light visual information.
Collapse
|
18
|
Martemyanov KA, Sampath AP. The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease. Annu Rev Vis Sci 2017; 3:25-51. [PMID: 28715957 DOI: 10.1146/annurev-vision-102016-061338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our robust visual experience is based on the reliable transfer of information from our photoreceptor cells, the rods and cones, to higher brain centers. At the very first synapse of the visual system, information is split into two separate pathways, ON and OFF, which encode increments and decrements in light intensity, respectively. The importance of this segregation is borne out in the fact that receptive fields in higher visual centers maintain a separation between ON and OFF regions. In the past decade, the molecular mechanisms underlying the generation of ON signals have been identified, which are unique in their use of a G-protein signaling cascade. In this review, we consider advances in our understanding of G-protein signaling in ON-bipolar cell (BC) dendrites and how insights about signaling have emerged from visual deficits, mostly night blindness. Studies of G-protein signaling in ON-BCs reveal an intricate mechanism that permits the regulation of visual sensitivity over a wide dynamic range.
Collapse
Affiliation(s)
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, University of California, Los Angeles, California 90095;
| |
Collapse
|
19
|
Astakhova LA, Nikolaeva DA, Fedotkina TV, Govardovskii VI, Firsov ML. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors. J Gen Physiol 2017; 149:689-701. [PMID: 28611079 PMCID: PMC5496506 DOI: 10.1085/jgp.201611744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/31/2017] [Indexed: 11/20/2022] Open
Abstract
Vertebrate photoreceptors need to distinguish light signals from background noise to convey visual information to downstream bipolar cells. By affecting both signal and noise, Astakhova et al. find that increases in intracellular cAMP can improve the signal-to-noise ratio by twofold. The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Darya A Nikolaeva
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Tamara V Fedotkina
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Victor I Govardovskii
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Michael L Firsov
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
20
|
Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation. Proc Natl Acad Sci U S A 2017; 114:5437-5442. [PMID: 28484015 DOI: 10.1073/pnas.1620010114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most vertebrate retinas contain a single type of rod for scotopic vision and multiple types of cones for photopic and color vision. The retinas of certain amphibian species uniquely contain two types of rods: red rods, which express rhodopsin, and green rods, which express a blue-sensitive cone pigment (M1/SWS2 group). Spontaneous activation of rhodopsin induced by thermal isomerization of the retinal chromophore has been suggested to contribute to the rod's background noise, which limits the visual threshold for scotopic vision. Therefore, rhodopsin must exhibit low thermal isomerization rate compared with cone visual pigments to adapt to scotopic condition. In this study, we determined whether amphibian blue-sensitive cone pigments in green rods exhibit low thermal isomerization rates to act as rhodopsin-like pigments for scotopic vision. Anura blue-sensitive cone pigments exhibit low thermal isomerization rates similar to rhodopsin, whereas Urodela pigments exhibit high rates like other vertebrate cone pigments present in cones. Furthermore, by mutational analysis, we identified a key amino acid residue, Thr47, that is responsible for the low thermal isomerization rates of Anura blue-sensitive cone pigments. These results strongly suggest that, through this mutation, anurans acquired special blue-sensitive cone pigments in their green rods, which could form the molecular basis for scotopic color vision with normal red rods containing green-sensitive rhodopsin.
Collapse
|
21
|
Intermolecular Interaction between Anchoring Subunits Specify Subcellular Targeting and Function of RGS Proteins in Retina ON-Bipolar Neurons. J Neurosci 2016; 36:2915-25. [PMID: 26961947 DOI: 10.1523/jneurosci.3833-15.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vertebrate retina, light responses generated by the rod photoreceptors are transmitted to the second-order neurons, the ON-bipolar cells (ON-BC), and this communication is indispensible for vision in dim light. In ON-BCs, synaptic transmission is initiated by the metabotropic glutamate receptor, mGluR6, that signals via the G-protein Go to control opening of the effector ion channel, TRPM1. A key role in this process belongs to the GTPase Activating Protein (GAP) complex that catalyzes Go inactivation upon light-induced suppression of glutamate release in rod photoreceptors, thereby driving ON-BC depolarization to changes in synaptic input. The GAP complex has a striking molecular complexity. It contains two Regulator of G-protein Signaling (RGS) proteins RGS7 and RGS11 that directly act on Go and two adaptor subunits: RGS Anchor Protein (R9AP) and the orphan receptor, GPR179. Here we examined the organizational principles of the GAP complex in ON-BCs. Biochemical experiments revealed that RGS7 binds to a conserved site in GPR179 and that RGS11 in vivo forms a complex only with R9AP. R9AP and GPR179 are further integrated via direct protein-protein interactions involving their cytoplasmic domains. Elimination of GPR179 prevents postsynaptic accumulation of R9AP. Furthermore, concurrent knock-out of both R9AP and RGS7 does not reconfigure the GAP complex and completely abolishes synaptic transmission, resulting in a novel mouse model of night blindness. Based on these results, we propose a model of hierarchical assembly and function of the GAP complex that supports ON-BCs visual signaling.
Collapse
|
22
|
Cao Y, Sarria I, Fehlhaber KE, Kamasawa N, Orlandi C, James KN, Hazen JL, Gardner MR, Farzan M, Lee A, Baker S, Baldwin K, Sampath AP, Martemyanov KA. Mechanism for Selective Synaptic Wiring of Rod Photoreceptors into the Retinal Circuitry and Its Role in Vision. Neuron 2015; 87:1248-1260. [PMID: 26402607 PMCID: PMC4583715 DOI: 10.1016/j.neuron.2015.09.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/11/2015] [Accepted: 08/31/2015] [Indexed: 01/06/2023]
Abstract
In the retina, rod and cone photoreceptors form distinct connections with different classes of downstream bipolar cells. However, the molecular mechanisms responsible for their selective connectivity are unknown. Here we identify a cell-adhesion protein, ELFN1, to be essential for the formation of synapses between rods and rod ON-bipolar cells in the primary rod pathway. ELFN1 is expressed selectively in rods where it is targeted to the axonal terminals by the synaptic release machinery. At the synapse, ELFN1 binds in trans to mGluR6, the postsynaptic receptor on rod ON-bipolar cells. Elimination of ELFN1 in mice prevents the formation of synaptic contacts involving rods, but not cones, allowing a dissection of the contributions of primary and secondary rod pathways to retinal circuit function and vision. We conclude that ELFN1 is necessary for the selective wiring of rods into the primary rod pathway and is required for high sensitivity of vision.
Collapse
Affiliation(s)
- Yan Cao
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Ignacio Sarria
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Katherine E Fehlhaber
- Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kiely N James
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92121, USA
| | - Jennifer L Hazen
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92121, USA
| | - Matthew R Gardner
- Department of Infectious Disease, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Michael Farzan
- Department of Infectious Disease, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Sheila Baker
- Department of Biochemistry, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Kristin Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92121, USA
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
23
|
Exchange of Cone for Rod Phosphodiesterase 6 Catalytic Subunits in Rod Photoreceptors Mimics in Part Features of Light Adaptation. J Neurosci 2015; 35:9225-35. [PMID: 26085644 DOI: 10.1523/jneurosci.3563-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Despite the expression of homologous phototransduction components, the molecular basis for differences in light-evoked responses between rod and cone photoreceptors remains unclear. We examined the role of cGMP phosphodiesterase (PDE6) in this difference by expressing cone PDE6 (PDE6C) in rd1/rd1 rods lacking rod PDE6 (PDE6AB) using transgenic mice. The expression of PDE6C rescues retinal degeneration observed in rd1/rd1 rods. Double-transgenic rods (PDE6C++) were compared with rd1/+ rods based on similar PDE6 expression. PDE6C increased the basal PDE activity and speeded the rate-limiting step for phototransduction deactivation, causing rod photoresponses to appear light adapted, with reduced dark current and sensitivity and faster response kinetics. When PDE6C++ and rd1/+ rods were exposed to similar background light, rd1/+ rods displayed greater desensitization. These results indicate an increased spontaneous activity and faster deactivation of PDE6C compared with PDE6AB in darkness, but that background light increases steady PDE6C activity to a lesser extent. In addition to accelerating the recovery of the photoresponse, faster PDE6C deactivation may blunt the rise in background-induced steady PDE6C activity. Therefore, higher basal PDE6C activity and faster deactivation together partially account for faster and less sensitive cone photoresponses in darkness, whereas a reduced rise of steady PDE6C activity in background light may allow cones to avoid saturation. SIGNIFICANCE STATEMENT Cones are the primary photoreceptors responsible for most of our visual experience. Cone light responses are less sensitive and display speeded responses compared with rods. Despite the fact that rods and cones use a G-protein signaling cascade with similar organization, the mechanistic basis for these differences remains unclear. Here, we examined the role of distinct isoforms of PDE6, the effector enzyme in phototransduction, in these differences. We developed a transgenic mouse model that expresses cone PDE6 in rods and show that the cone PDE6 isoform is partially responsible for the difference in sensitivity and response kinetics between rods and cones.
Collapse
|
24
|
Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49:46-66. [PMID: 26187035 DOI: 10.1016/j.preteyeres.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023]
Abstract
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
25
|
Tao Y, Chen T, Liu B, Yang GQ, Peng G, Zhang H, Huang YF. The neurotoxic effects of N-methyl-N-nitrosourea on the electrophysiological property and visual signal transmission of rat's retina. Toxicol Appl Pharmacol 2015; 286:44-52. [DOI: 10.1016/j.taap.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
26
|
Kim AJ, Lazar AA, Slutskiy YB. Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations. eLife 2015; 4. [PMID: 25974217 PMCID: PMC4466247 DOI: 10.7554/elife.06651] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
Temporal experience of odor gradients is important in spatial orientation of animals. The fruit fly Drosophila melanogaster exhibits robust odor-guided behaviors in an odor gradient field. In order to investigate how early olfactory circuits process temporal variation of olfactory stimuli, we subjected flies to precisely defined odor concentration waveforms and examined spike patterns of olfactory sensory neurons (OSNs) and projection neurons (PNs). We found a significant temporal transformation between OSN and PN spike patterns, manifested by the PN output strongly signaling the OSN spike rate and its rate of change. A simple two-dimensional model admitting the OSN spike rate and its rate of change as inputs closely predicted the PN output. When cascaded with the rate-of-change encoding by OSNs, PNs primarily signal the acceleration and the rate of change of dynamic odor stimuli to higher brain centers, thereby enabling animals to reliably respond to the onsets of odor concentrations.
Collapse
Affiliation(s)
- Anmo J Kim
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Aurel A Lazar
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Yevgeniy B Slutskiy
- Department of Electrical Engineering, Columbia University, New York, United States
| |
Collapse
|
27
|
Sarria I, Pahlberg J, Cao Y, Kolesnikov AV, Kefalov VJ, Sampath AP, Martemyanov KA. Sensitivity and kinetics of signal transmission at the first visual synapse differentially impact visually-guided behavior. eLife 2015; 4:e06358. [PMID: 25879270 PMCID: PMC4412108 DOI: 10.7554/elife.06358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/11/2015] [Indexed: 12/29/2022] Open
Abstract
In the retina, synaptic transmission between photoreceptors and downstream ON-bipolar neurons (ON-BCs) is mediated by a GPCR pathway, which plays an essential role in vision. However, the mechanisms that control signal transmission at this synapse and its relevance to behavior remain poorly understood. In this study we used a genetic system to titrate the rate of GPCR signaling in ON-BC dendrites by varying the concentration of key RGS proteins and measuring the impact on transmission of signal between photoreceptors and ON-BC neurons using electroretinography and single cell recordings. We found that sensitivity, onset timing, and the maximal amplitude of light-evoked responses in rod- and cone-driven ON-BCs are determined by different RGS concentrations. We further show that changes in RGS concentration differentially impact visually guided-behavior mediated by rod and cone ON pathways. These findings illustrate that neuronal circuit properties can be modulated by adjusting parameters of GPCR-based neurotransmission at individual synapses. DOI:http://dx.doi.org/10.7554/eLife.06358.001 At the back of the eye, a structure called the retina contains several types of cell that convert light into the electrical signals that the brain interprets to produce vision. Cells called rods and cones detect the light, and then signal to other neurons in the retina that relay this information to the brain. Rods and cones are specialized to respond best to different visual features: cones detect color and can track rapid movement; whereas rods are more sensitive to low light levels and so enable night vision. All rods and cones communicate with particular types of neuron called an ‘ON bipolar cell’: rods send their information to rod-specific ON bipolar cells and cones to cone ON-bipolar cells. To maintain the differences in how visual features are detected, the signals sent by the rod or cone cells need to be tuned separately. Previous studies showed that bipolar cells rely on the action of proteins called RGSs to control how information is passed from rods and cones to ON bipolar cells. However, how the RGS proteins produce their effects is not well understood, and neither is their impact on vision or behavior. Sarria et al. used a genetic approach to create mice that progressively lost RGS proteins from their retina over the course of several weeks. Recording the nerve impulses produced by the bipolar cells as light shone on the retina revealed that RGS depletion affects these neurons in three ways: how sensitive they are to the signals sent by the rod and cone cells, how quickly they respond to a signal, and the size of the electrical response that they produce. Sarria et al. then investigated how these changes affected the behavior of the mice. To test the response of the rod cells, the mice performed tasks in dim light. This revealed that it was only when the sensitivity of the bipolar cells decreased that the mice performed worse. However, in a task involving fast-moving objects that investigated the response of cone cells, only changes to the speed of the response affected vision. Therefore, the RGS protein has different effects on the signals from rod cells and cone cells. These findings will be useful for understanding how different light sensitive cells in the retina communicate their signals to extract important visual features, allowing us to both see well at night and track rapid changes in scenery on a bright sunny day. DOI:http://dx.doi.org/10.7554/eLife.06358.002
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Johan Pahlberg
- Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University in St.Louis, St. Louis, United States
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University in St.Louis, St. Louis, United States
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
28
|
Chen M, Križaj D, Thoreson WB. Intracellular calcium stores drive slow non-ribbon vesicle release from rod photoreceptors. Front Cell Neurosci 2014; 8:20. [PMID: 24550779 PMCID: PMC3910126 DOI: 10.3389/fncel.2014.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/13/2014] [Indexed: 01/26/2023] Open
Abstract
Rods are capable of greater slow release than cones contributing to overall slower release kinetics. Slow release in rods involves Ca2+-induced Ca2+ release (CICR). By impairing release from ribbons, we found that unlike cones where release occurs entirely at ribbon-style active zones, slow release from rods occurs mostly at ectopic, non-ribbon sites. To investigate the role of CICR in ribbon and non-ribbon release from rods, we used total internal reflection fluorescence microscopy as a tool for visualizing terminals of isolated rods loaded with fluorescent Ca2+ indicator dyes and synaptic vesicles loaded with dextran-conjugated pH-sensitive rhodamine. We found that rather than simply facilitating release, activation of CICR by ryanodine triggered release directly in rods, independent of plasma membrane Ca2+ channel activation. Ryanodine-evoked release occurred mostly at non-ribbon sites and release evoked by sustained depolarization at non-ribbon sites was mostly due to CICR. Unlike release at ribbon-style active zones, non-ribbon release did not occur at fixed locations. Fluorescence recovery after photobleaching of endoplasmic reticulum (ER)-tracker dye in rod terminals showed that ER extends continuously from synapse to soma. Release of Ca2+ from terminal ER by lengthy depolarization did not significantly deplete Ca2+ from ER in the perikaryon. Collectively, these results indicate that CICR-triggered release at non-ribbon sites is a major mechanism for maintaining vesicle release from rods and that CICR in terminals may be sustained by diffusion of Ca2+ through ER from other parts of the cell.
Collapse
Affiliation(s)
- Minghui Chen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA ; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center Omaha, NE, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine Salt Lake City, UT, USA
| | - Wallace B Thoreson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA ; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
29
|
Warzecha AK, Rosner R, Grewe J. Impact and sources of neuronal variability in the fly's motion vision pathway. ACTA ACUST UNITED AC 2012. [PMID: 23178476 DOI: 10.1016/j.jphysparis.2012.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nervous systems encode information about dynamically changing sensory input by changes in neuronal activity. Neuronal activity changes, however, also arise from noise sources within and outside the nervous system or from changes of the animal's behavioral state. The resulting variability of neuronal responses in representing sensory stimuli limits the reliability with which animals can respond to stimuli and may thus even affect the chances for survival in certain situations. Relevant sources of noise arising at different stages along the motion vision pathway have been investigated from the sensory input to the initiation of behavioral reactions. Here, we concentrate on the reliability of processing visual motion information in flies. Flies rely on visual motion information to guide their locomotion. They are among the best established model systems for the processing of visual motion information allowing us to bridge the gap between behavioral performance and underlying neuronal computations. It has been possible to directly assess the consequences of noise at major stages of the fly's visual motion processing system on the reliability of neuronal signals. Responses of motion sensitive neurons and their variability have been related to optomotor movements as indicators for the overall performance of visual motion computation. We address whether and how noise already inherent in the stimulus, e.g. photon noise for the visual system, influences later processing stages and to what extent variability at the output level of the sensory system limits behavioral performance. Recent advances in circuit analysis and the progress in monitoring neuronal activity in behaving animals should now be applied to understand how the animal meets the requirements of fast and reliable manoeuvres in naturalistic situations.
Collapse
Affiliation(s)
| | - Ronny Rosner
- Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Jan Grewe
- Dept. Biology II, Ludwig-Maximilians Univ., 82152 Martinsried, Germany
| |
Collapse
|
30
|
Johnson JS, Yin P, O'Connor KN, Sutter ML. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis. J Neurophysiol 2012; 107:3325-41. [PMID: 22422997 DOI: 10.1152/jn.00812.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1.
Collapse
Affiliation(s)
- Jeffrey S Johnson
- Center for Neuroscience, Univ. of California at Davis, Davis, CA 95618, USA
| | | | | | | |
Collapse
|
31
|
Schmitz F, Natarajan S, Venkatesan JK, Wahl S, Schwarz K, Grabner CP. EF hand-mediated Ca- and cGMP-signaling in photoreceptor synaptic terminals. Front Mol Neurosci 2012; 5:26. [PMID: 22393316 PMCID: PMC3289946 DOI: 10.3389/fnmol.2012.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022] Open
Abstract
Photoreceptors, the light-sensitive receptor neurons of the retina, receive and transmit a plethora of visual informations from the surrounding world. Photoreceptors capture light and convert this energy into electrical signals that are conveyed to the inner retina. For synaptic communication with the inner retina, photoreceptors make large active zones that are marked by synaptic ribbons. These unique synapses support continuous vesicle exocytosis that is modulated by light-induced, graded changes of membrane potential. Synaptic transmission can be adjusted in an activity-dependent manner, and at the synaptic ribbons, Ca2+- and cGMP-dependent processes appear to play a central role. EF-hand-containing proteins mediate many of these Ca2+- and cGMP-dependent functions. Since continuous signaling of photoreceptors appears to be prone to malfunction, disturbances of Ca2+- and cGMP-mediated signaling in photoreceptors can lead to visual defects, retinal degeneration (rd), and even blindness. This review summarizes aspects of signal transmission at the photoreceptor presynaptic terminals that involve EF-hand-containing Ca2+-binding proteins.
Collapse
Affiliation(s)
- Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University Saarland, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Arman AC, Sampath AP. Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina. J Neurophysiol 2012; 107:2649-59. [PMID: 22338022 DOI: 10.1152/jn.01202.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nervous system frequently integrates parallel streams of information to encode a broad range of stimulus strengths. In mammalian retina it is generally believed that signals generated by rod and cone photoreceptors converge onto cone bipolar cells prior to reaching the retinal output, the ganglion cells. Near absolute visual threshold a specialized mammalian retinal circuit, the rod bipolar pathway, pools signals from many rods and converges on depolarizing (AII) amacrine cells. However, whether subsequent signal flow to OFF ganglion cells requires OFF cone bipolar cells near visual threshold remains unclear. Glycinergic synapses between AII amacrine cells and OFF cone bipolar cells are believed to relay subsequently rod-driven signals to OFF ganglion cells. However, AII amacrine cells also make glycinergic synapses directly with OFF ganglion cells. To determine the route for signal flow near visual threshold, we measured the effect of the glycine receptor antagonist strychnine on response threshold in fully dark-adapted retinal cells. As shown previously, we found that response threshold for OFF ganglion cells was elevated by strychnine. Surprisingly, strychnine did not elevate response threshold in any subclass of OFF cone bipolar cell. Instead, in every OFF cone bipolar subclass strychnine suppressed tonic glycinergic inhibition without altering response threshold. Consistent with this lack of influence of strychnine, we found that the dominant input to OFF cone bipolar cells in darkness was excitatory and the response threshold of the excitatory input varied by subclass. Thus, in the dark-adapted mouse retina, the high absolute sensitivity of OFF ganglion cells cannot be explained by signal transmission through OFF cone bipolar cells.
Collapse
Affiliation(s)
- A Cyrus Arman
- Neurosciences Graduate Program, Department of Physiology and Biophysics, USC Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|