1
|
Hernandez J, Pick L, Reding K. Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence. EvoDevo 2020; 11:9. [PMID: 32337018 PMCID: PMC7178596 DOI: 10.1186/s13227-020-00154-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Much has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, Drosophila melanogaster, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, Oncopeltus fasciatus (order: Hemiptera)—close outgroup to holometabolous insects—is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult. Results Here we present the harlequin bug, Murgantia histrionica, as a new hemipteran model species. Murgantia—a member of the stink bug family Pentatomidae which shares a common ancestor with Oncopeltus ~ 200 mya—is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use Murgantia to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to Oncopeltus. Specifically, PRGs even-skipped, odd-skipped, paired and sloppy-paired are initially expressed in PR-stripes in Drosophila and a number of holometabolous insects but in segmental-stripes in Oncopeltus. We found that these genes are likewise expressed in segmental-stripes in Murgantia, while runt displays partial PR-character in both species. Also like Oncopeltus, E75A is expressed in a clear PR-pattern in blastoderm- and germband-stage Murgantia embryos, although it plays no role in segmentation in Drosophila. Thus, genes diagnostic of the split between holometabolous insects and Oncopeltus are expressed in an Oncopeltus-like fashion during Murgantia development. Conclusions The similarity in gene expression between Murgantia and Oncopeltus suggests that Oncopeltus is not a sole outlier species in failing to utilize orthologs of Drosophila PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of E75A in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.
Collapse
Affiliation(s)
- Jessica Hernandez
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Katie Reding
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| |
Collapse
|
2
|
Xiang J, Reding K, Heffer A, Pick L. Conservation and variation in pair-rule gene expression and function in the intermediate-germ beetle Dermestes maculatus. Development 2017; 144:4625-4636. [PMID: 29084804 DOI: 10.1242/dev.154039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023]
Abstract
A set of pair-rule (PR) segmentation genes (PRGs) promotes the formation of alternate body segments in Drosophila melanogaster Whereas Drosophila embryos are long-germ, with segments specified more or less simultaneously, most insects add segments sequentially as the germband elongates. The hide beetle Dermestes maculatus represents an intermediate between short- and long-germ development, ideal for comparative study of PRGs. We show that eight of nine Drosophila PRG orthologs are expressed in stripes in Dermestes Functional results parse these genes into three groups: Dmac-eve, -odd and -run play roles in both germband elongation and PR patterning; Dmac-slp and -prd function exclusively as complementary, classic PRGs, supporting functional decoupling of elongation and segment formation; and orthologs of ftz, ftz-f1, h and opa show more variable function in Dermestes and other species. While extensive cell death generally prefigured Dermestes PRG RNAi-mediated cuticle defects, an organized region with high mitotic activity near the margin of the segment addition zone is likely to have contributed to truncation of eveRNAi embryos. Our results suggest general conservation of clock-like regulation of PR stripe addition in sequentially segmenting species while highlighting regulatory rewiring involving a subset of PRG orthologs.
Collapse
Affiliation(s)
- Jie Xiang
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| | - Katie Reding
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Alison Heffer
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA .,Department of Entomology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Field A, Xiang J, Anderson WR, Graham P, Pick L. Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers. PLoS One 2016; 11:e0163128. [PMID: 27723822 PMCID: PMC5056698 DOI: 10.1371/journal.pone.0163128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022] Open
Abstract
The orphan nuclear receptor Ftz-F1 is expressed in all somatic nuclei in Drosophila embryos, but mutations result in a pair-rule phenotype. This was explained by the interaction of Ftz-F1 with the homeodomain protein Ftz that is expressed in stripes in the primordia of segments missing in either ftz-f1 or ftz mutants. Ftz-F1 and Ftz were shown to physically interact and coordinately activate the expression of ftz itself and engrailed by synergistic binding to composite Ftz-F1/Ftz binding sites. However, attempts to identify additional target genes on the basis of Ftz-F1/ Ftz binding alone has met with only limited success. To discern rules for Ftz-F1 target site selection in vivo and to identify additional target genes, a microarray analysis was performed comparing wildtype and ftz-f1 mutant embryos. Ftz-F1-responsive genes most highly regulated included engrailed and nine additional genes expressed in patterns dependent on both ftz and ftz-f1. Candidate enhancers for these genes were identified by combining BDTNP Ftz ChIP-chip data with a computational search for Ftz-F1 binding sites. Of eight enhancer reporter genes tested in transgenic embryos, six generated expression patterns similar to the corresponding endogenous gene and expression was lost in ftz mutants. These studies identified a new set of Ftz-F1 targets, all of which are co-regulated by Ftz. Comparative analysis of enhancers containing Ftz/Ftz-F1 binding sites that were or were not bona fide targets in vivo suggested that GAF negatively regulates enhancers that contain Ftz/Ftz-F1 binding sites but are not actually utilized. These targets include other regulatory factors as well as genes involved directly in morphogenesis, providing insight into how pair-rule genes establish the body pattern.
Collapse
Affiliation(s)
- Amanda Field
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Jie Xiang
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - W. Ray Anderson
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Patricia Graham
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
- * E-mail:
| |
Collapse
|
4
|
Clark E, Akam M. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network. eLife 2016; 5:e18215. [PMID: 27525481 PMCID: PMC5035143 DOI: 10.7554/elife.18215] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023] Open
Abstract
The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
|
6
|
Pick L. Hox genes, evo-devo, and the case of the ftz gene. Chromosoma 2015; 125:535-51. [PMID: 26596987 DOI: 10.1007/s00412-015-0553-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/29/2022]
Abstract
The discovery of the broad conservation of embryonic regulatory genes across animal phyla, launched by the cloning of homeotic genes in the 1980s, was a founding event in the field of evolutionary developmental biology (evo-devo). While it had long been known that fundamental cellular processes, commonly referred to as housekeeping functions, are shared by animals and plants across the planet-processes such as the storage of information in genomic DNA, transcription, translation and the machinery for these processes, universal codon usage, and metabolic enzymes-Hox genes were different: mutations in these genes caused "bizarre" homeotic transformations of insect body parts that were certainly interesting but were expected to be idiosyncratic. The isolation of the genes responsible for these bizarre phenotypes turned out to be highly conserved Hox genes that play roles in embryonic patterning throughout Metazoa. How Hox genes have changed to promote the development of diverse body plans remains a central issue of the field of evo-devo today. For this Memorial article series, I review events around the discovery of the broad evolutionary conservation of Hox genes and the impact of this discovery on the field of developmental biology. I highlight studies carried out in Walter Gehring's lab and by former lab members that have continued to push the field forward, raising new questions and forging new approaches to understand the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- Leslie Pick
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Sivanantharajah L, Percival-Smith A. Differential pleiotropy and HOX functional organization. Dev Biol 2014; 398:1-10. [PMID: 25448696 DOI: 10.1016/j.ydbio.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 12/14/2022]
Abstract
Key studies led to the idea that transcription factors are composed of defined modular protein motifs or domains, each with separable, unique function. During evolution, the recombination of these modular domains could give rise to transcription factors with new properties, as has been shown using recombinant molecules. This archetypic, modular view of transcription factor organization is based on the analyses of a few transcription factors such as GAL4, which may represent extreme exemplars rather than an archetype or the norm. Recent work with a set of Homeotic selector (HOX) proteins has revealed differential pleiotropy: the observation that highly-conserved HOX protein motifs and domains make small, additive, tissue specific contributions to HOX activity. Many of these differentially pleiotropic HOX motifs may represent plastic sequence elements called short linear motifs (SLiMs). The coupling of differential pleiotropy with SLiMs, suggests that protein sequence changes in HOX transcription factors may have had a greater impact on morphological diversity during evolution than previously believed. Furthermore, differential pleiotropy may be the genetic consequence of an ensemble nature of HOX transcription factor allostery, where HOX proteins exist as an ensemble of states with the capacity to integrate an extensive array of developmental information. Given a new structural model for HOX functional domain organization, the properties of the archetypic TF may require reassessment.
Collapse
Affiliation(s)
- Lovesha Sivanantharajah
- Department of Biology, The University of Western Ontario, BGS231, London, Ontario, Canada N6A 5B7.
| | - Anthony Percival-Smith
- Department of Biology, The University of Western Ontario, BGS231, London, Ontario, Canada N6A 5B7
| |
Collapse
|
8
|
Abstract
Despite enormous body plan variation, genes regulating embryonic development are highly conserved. Here, we probe the mechanisms that predispose ancient regulatory genes to reutilization and diversification rather than evolutionary loss. The Hox gene fushi tarazu (ftz) arose as a homeotic gene but functions as a pair-rule segmentation gene in Drosophila. ftz shows extensive variation in expression and protein coding regions but has managed to elude loss from arthropod genomes. We asked what properties prevent this loss by testing the importance of different protein motifs and partners in the developing CNS, where ftz expression is conserved. Drosophila Ftz proteins with mutated protein motifs were expressed under the control of a neurogenic-specific ftz cis-regulatory element (CRE) in a ftz mutant background rescued for segmentation defects. Ftz CNS function did not require the variable motifs that mediate differential cofactor interactions involved in homeosis or segmentation, which vary in arthropods. Rather, CNS function did require the shared DNA-binding homeodomain, which plays less of a role in Ftz segmentation activity. The Antennapedia homeodomain substituted for Ftz homeodomain function in the Drosophila CNS, but full-length Antennapedia did not rescue CNS defects. These results suggest that a core CNS function retains ftz in arthropod genomes. Acquisition of a neurogenic CRE led to ftz expression in unique CNS cells, differentiating its role from neighboring Hox genes, rendering it nonredundant. The inherent flexibility of modular CREs and protein domains allows for stepwise acquisition of new functions, explaining broad retention of regulatory genes during animal evolution.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742
| | - Jie Xiang
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742
| | - Leslie Pick
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
9
|
Heffer A, Pick L. Conservation and variation in Hox genes: how insect models pioneered the evo-devo field. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:161-179. [PMID: 23317041 DOI: 10.1146/annurev-ento-120811-153601] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Evolutionary developmental biology, or evo-devo, broadly investigates how body plan diversity and morphological novelties have arisen and persisted in nature. The discovery of Hox genes in Drosophila, and their subsequent identification in most other metazoans, led biologists to try to understand how embryonic genes crucial for proper development have changed to promote the vast morphological variation seen in nature. Insects are ideal model systems for studying this diversity and the mechanisms underlying it because phylogenetic relationships are well established, powerful genetic tools have been developed, and there are many examples of evolutionary specializations that have arisen in nature in different insect lineages, such as the jumping leg of orthopterans and the helmet structures of treehoppers. Here, we briefly introduce the field of evo-devo and Hox genes, discuss functional tools available to study early developmental genes in insects, and provide examples in which changes in Hox genes have contributed to changes in body plan or morphology.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
10
|
Pick L, Heffer A. Hoxgene evolution: multiple mechanisms contributing to evolutionary novelties. Ann N Y Acad Sci 2012; 1256:15-32. [DOI: 10.1111/j.1749-6632.2011.06385.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|