1
|
Berghöfer J, Khaveh N, Mundlos S, Metzger J. Multi-tool copy number detection highlights common body size-associated variants in miniature pig breeds from different geographical regions. BMC Genomics 2025; 26:285. [PMID: 40121435 PMCID: PMC11929999 DOI: 10.1186/s12864-025-11446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Copy number variations (CNVs) represent a common and highly specific type of variation in the genome, potentially influencing genetic diversity and mammalian phenotypic development. Structural variants, such as deletions, duplications, and insertions, have frequently been highlighted as key factors influencing traits in high-production pigs. However, comprehensive CNV analyses in miniature pig breeds are limited despite their value in biomedical research. RESULTS This study performed whole-genome sequencing in 36 miniature pigs from nine breeds from America, Asia and Oceania, and Europe. By employing a multi-tool approach (CNVpytor, Delly, GATK gCNV, Smoove), the accuracy of CNV identification was improved. In total, 34 homozygous CNVs overlapped with exonic regions in all samples, suggesting a role in expressing specific phenotypes such as uniform growth patterns, fertility, or metabolic function. In addition, 386 copy number variation regions (CNVRs) shared by all breeds were detected, covering 33.6 Mb (1.48% of the autosomal genome). Further, 132 exclusive CNVRs were identified for American breeds, 47 for Asian and Oceanian breeds, and 114 for European breeds. Functional enrichment analysis revealed genes within the common CNVRs involved in body height determination and other growth-related parameters. Exclusive CNVRs were located in the region of genes enriched for lipid metabolism in American minipigs, reproductive traits in Asian and Oceanian breeds, and cardiovascular features and body height in European breeds. In the selected groups, quantitative trait loci associated with body size, meat quality, reproduction, and disease susceptibility were highlighted. CONCLUSION This investigation of the CNV landscape of minipigs underlines the impact of selective breeding on structural variants and its role in the development of specific breed phenotypes across geographical areas. The multi-tool approach provides a valuable resource for future studies on the effects of artificial selection on livestock genomes.
Collapse
Affiliation(s)
- Jan Berghöfer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
- Institute of Animal Genomics, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Nadia Khaveh
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Animal Genomics, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany
| | - Julia Metzger
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Institute of Animal Genomics, University of Veterinary Medicine Hanover, Hanover, Germany.
| |
Collapse
|
2
|
Carballo-Pacoret P, Carracedo A, Rodriguez-Fontenla C. Unraveling the three-dimensional (3D) genome architecture in Neurodevelopmental Disorders (NDDs). Neurogenetics 2024; 25:293-305. [PMID: 39190242 DOI: 10.1007/s10048-024-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024]
Abstract
The human genome, comprising millions of pairs of bases, serves as the blueprint of life, encoding instructions for cellular processes. However, genomes are not merely linear sequences; rather, the complex of DNA and histones, known as chromatin, exhibits complex organization across various levels, which profoundly influence gene expression and cellular function. Central to understanding genome organization is the emerging field of three-dimensional (3D) genome studies. Utilizing advanced techniques such as Hi-C, researchers have unveiled non-random dispositions of genomic elements, highlighting their importance in transcriptional regulation and disease mechanisms. Topologically Associating Domains (TADs), that demarcate regions of chromatin with preferential internal interactions, play crucial roles in gene regulation and are increasingly implicated in various diseases such as cancer and schizophrenia. However, their role in Neurodevelopmental Disorders (NDDs) remains poorly understood. Here, we focus on TADs and 3D conservation across the evolution and between cell types in NDDs. The investigation into genome organization and its impact on disease has led to significant breakthroughs in understanding NDDs etiology such ASD (Autism Spectrum Disorder). By elucidating the wide spectrum of ASD manifestations, researchers aim to uncover the underlying genetic and epigenetic factors contributing to its heterogeneity. Moreover, studies linking TAD disruption to NDDs underscore the importance of spatial genome organization in maintaining proper brain development and function. In summary, this review highlights the intricate interplay between genome organization, transcriptional control, and disease pathology, shedding light on fundamental biological processes and offering insights into the mechanisms underlying NDDs like ASD.
Collapse
Affiliation(s)
- P Carballo-Pacoret
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Av Barcelona 31, Santiago de Compostela A Coruña, 15706, Spain
- Grupo de Medicina Xenómica, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco s/n., Santiago de Compostela, 15782, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Av Barcelona 31, Santiago de Compostela A Coruña, 15706, Spain
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco s/n., Santiago de Compostela, 15782, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Av Barcelona 31, Santiago de Compostela A Coruña, 15706, Spain.
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
- Grupo de Medicina Xenómica, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco s/n., Santiago de Compostela, 15782, Spain.
| |
Collapse
|
3
|
Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, Alföldi J, Watts NA, Vittal C, Gauthier LD, Poterba T, Wilson MW, Tarasova Y, Phu W, Grant R, Yohannes MT, Koenig Z, Farjoun Y, Banks E, Donnelly S, Gabriel S, Gupta N, Ferriera S, Tolonen C, Novod S, Bergelson L, Roazen D, Ruano-Rubio V, Covarrubias M, Llanwarne C, Petrillo N, Wade G, Jeandet T, Munshi R, Tibbetts K, O'Donnell-Luria A, Solomonson M, Seed C, Martin AR, Talkowski ME, Rehm HL, Daly MJ, Tiao G, Neale BM, MacArthur DG, Karczewski KJ. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 2024; 625:92-100. [PMID: 38057664 PMCID: PMC11629659 DOI: 10.1038/s41586-023-06045-0] [Citation(s) in RCA: 448] [Impact Index Per Article: 448.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/03/2023] [Indexed: 12/08/2023]
Abstract
The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders1-4, but attempts to assess constraint for non-protein-coding regions have proved more difficult. Here we aggregate, process and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD)-the largest public open-access human genome allele frequency reference dataset-and use it to build a genomic constraint map for the whole genome (genomic non-coding constraint of haploinsufficient variation (Gnocchi)). We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation. As expected, the average constraint for protein-coding sequences is stronger than that for non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants that are implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, which in turn suggests that non-coding constraint can aid the identification of constrained genes that are as yet unrecognized by current gene constraint metrics. We demonstrate that this genome-wide constraint map improves the identification and interpretation of functional human genetic variation.
Collapse
Affiliation(s)
- Siwei Chen
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
| | - Laurent C Francioli
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Julia K Goodrich
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan L Collins
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Masahiro Kanai
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Qingbo Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jessica Alföldi
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas A Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher Vittal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Laura D Gauthier
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy Poterba
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael W Wilson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Yekaterina Tarasova
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William Phu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Riley Grant
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mary T Yohannes
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zan Koenig
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yossi Farjoun
- Richards Lab, Lady Davis Institute, Montreal, Quebec, Canada
| | - Eric Banks
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Stacey Gabriel
- Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Ferriera
- Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Tolonen
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sam Novod
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Louis Bergelson
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Roazen
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Miguel Covarrubias
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Nikelle Petrillo
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gordon Wade
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault Jeandet
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruchi Munshi
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathleen Tibbetts
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Matthew Solomonson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Cotton Seed
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alicia R Martin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Grace Tiao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
5
|
Hirayama T, Kadooka Y, Tarusawa E, Saitoh S, Nakayama H, Hoshino N, Nakama S, Fukuishi T, Kawanishi Y, Umeshima H, Tomita K, Yoshimura Y, Galjart N, Hashimoto K, Ohno N, Yagi T. CTCF loss induces giant lamellar bodies in Purkinje cell dendrites. Acta Neuropathol Commun 2022; 10:172. [PMID: 36447271 PMCID: PMC9706876 DOI: 10.1186/s40478-022-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
CCCTC-binding factor (CTCF) has a key role in higher-order chromatin architecture that is important for establishing and maintaining cell identity by controlling gene expression. In the mature cerebellum, CTCF is highly expressed in Purkinje cells (PCs) as compared with other cerebellar neurons. The cerebellum plays an important role in motor function by regulating PCs, which are the sole output neurons, and defects in PCs cause motor dysfunction. However, the role of CTCF in PCs has not yet been explored. Here we found that the absence of CTCF in mouse PCs led to progressive motor dysfunction and abnormal dendritic morphology in those cells, which included dendritic self-avoidance defects and a proximal shift in the climbing fibre innervation territory on PC dendrites. Furthermore, we found the peculiar lamellar structures known as "giant lamellar bodies" (GLBs), which have been reported in PCs of patients with Werdnig-Hoffman disease, 13q deletion syndrome, and Krabbe disease. GLBs are localized to PC dendrites and are assumed to be associated with neurodegeneration. They have been noted, however, only in case reports following autopsy, and reports of their existence have been very limited. Here we show that GLBs were reproducibly formed in PC dendrites of a mouse model in which CTCF was deleted. GLBs were not noted in PC dendrites at infancy but instead developed over time. In conjunction with GLB development in PC dendrites, the endoplasmic reticulum was almost absent around the nuclei, the mitochondria were markedly swollen and their cristae had decreased drastically, and almost all PCs eventually disappeared as severe motor deficits manifested. Our results revealed the important role of CTCF during normal development and in maintaining PCs and provide new insights into the molecular mechanism of GLB formation during neurodegenerative disease.
Collapse
Affiliation(s)
- Teruyoshi Hirayama
- grid.136593.b0000 0004 0373 3971KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871 Japan ,grid.267335.60000 0001 1092 3579Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Yuuki Kadooka
- grid.136593.b0000 0004 0373 3971KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871 Japan
| | - Etsuko Tarusawa
- grid.136593.b0000 0004 0373 3971KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871 Japan
| | - Sei Saitoh
- grid.467811.d0000 0001 2272 1771Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, 444-8787 Japan ,grid.256115.40000 0004 1761 798XDepartment of Anatomy II and Cell Biology, Fujita Health University School of Medicine, 1-98 Dengakubo, Kutsukake-cho, Toyoake, 470-1192 Japan
| | - Hisako Nakayama
- grid.410818.40000 0001 0720 6587Department of Physiology, Division of Neurophysiology, School of Medicine, Tokyo Women’s Medical University, Tokyo, 162-8666 Japan ,grid.257022.00000 0000 8711 3200Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Natsumi Hoshino
- grid.136593.b0000 0004 0373 3971KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871 Japan
| | - Soichiro Nakama
- grid.267335.60000 0001 1092 3579Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Takahiro Fukuishi
- grid.267335.60000 0001 1092 3579Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Yudai Kawanishi
- grid.267335.60000 0001 1092 3579Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Hiroki Umeshima
- grid.267335.60000 0001 1092 3579Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Koichi Tomita
- grid.267335.60000 0001 1092 3579Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Yumiko Yoshimura
- grid.467811.d0000 0001 2272 1771Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585 Japan
| | - Niels Galjart
- grid.5645.2000000040459992XDepartment of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Kouichi Hashimoto
- grid.257022.00000 0000 8711 3200Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Nobuhiko Ohno
- grid.467811.d0000 0001 2272 1771Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan ,grid.410804.90000000123090000Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke, 329-0498 Japan
| | - Takeshi Yagi
- grid.136593.b0000 0004 0373 3971KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871 Japan
| |
Collapse
|
6
|
Boyling A, Perez-Siles G, Kennerson ML. Structural Variation at a Disease Mutation Hotspot: Strategies to Investigate Gene Regulation and the 3D Genome. Front Genet 2022; 13:842860. [PMID: 35401663 PMCID: PMC8990796 DOI: 10.3389/fgene.2022.842860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
A rare form of X-linked Charcot-Marie-Tooth neuropathy, CMTX3, is caused by an interchromosomal insertion occurring at chromosome Xq27.1. Interestingly, eight other disease phenotypes have been associated with insertions (or insertion-deletions) occurring at the same genetic locus. To date, the pathogenic mechanism underlying most of these diseases remains unsolved, although local gene dysregulation has clearly been implicated in at least two phenotypes. The challenges of accessing disease-relevant tissue and modelling these complex genomic rearrangements has led to this research impasse. We argue that recent technological advancements can overcome many of these challenges, particularly induced pluripotent stem cells (iPSC) and their capacity to provide access to patient-derived disease-relevant tissue. However, to date these valuable tools have not been utilized to investigate the disease-associated insertions at chromosome Xq27.1. Therefore, using CMTX3 as a reference disease, we propose an experimental approach that can be used to explore these complex mutations, as well as similar structural variants located elsewhere in the genome. The mutational hotspot at Xq27.1 is a valuable disease paradigm with the potential to improve our understanding of the pathogenic consequences of complex structural variation, and more broadly, refine our knowledge of the multifaceted process of long-range gene regulation. Intergenic structural variation is a critically understudied class of mutation, although it is likely to contribute significantly to unsolved genetic disease.
Collapse
Affiliation(s)
- Alexandra Boyling
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Alexandra Boyling, ; Marina L. Kennerson,
| | - Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Marina L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW, Australia
- *Correspondence: Alexandra Boyling, ; Marina L. Kennerson,
| |
Collapse
|
7
|
A novel complex genomic rearrangement affecting the KCNJ2 regulatory region causes a variant of Cooks syndrome. Hum Genet 2021; 141:217-227. [PMID: 34821995 DOI: 10.1007/s00439-021-02403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Cooks syndrome (CS) is an ultrarare limb malformation due to in tandem microduplications involving KCNJ2 and extending to the 5' regulatory element of SOX9. To date, six CS families were resolved at the molecular level. Subsequent studies explored the evolutionary and pathological complexities of the SOX9-KCNJ2/Sox9-Kcnj2 locus, and suggested a key role for the formation of novel topologically associating domain (TAD) by inter-TAD duplications in causing CS. Here, we report a unique case of CS associated with a de novo 1;17 translocation affecting the KCNJ2 locus. On chromosome 17, the breakpoint mapped between KCNJ16 and KCNJ2, and combined with a ~ 5 kb deletion in the 5' of KCNJ2. Based on available capture Hi-C data, the breakpoint on chromosome 17 separated KCNJ2 from a putative enhancer. Gene expression analysis demonstrated downregulation of KCNJ2 in both patient's blood cells and cultured skin fibroblasts. Our findings suggest that a complex rearrangement falling in the 5' of KCNJ2 may mimic the developmental consequences of in tandem duplications affecting the SOX9-KCNJ2/Sox9-Kcnj2 locus. This finding adds weight to the notion of an intricate role of gene regulatory regions and, presumably, the related three-dimensional chromatin structure in normal and abnormal human morphology.
Collapse
|
8
|
From FISH to Hi-C: The Chromatin Architecture of the Chromosomal Region 7q36.3, Frequently Rearranged in Leukemic Cells, Is Evolutionary Conserved. Int J Mol Sci 2021; 22:ijms22052338. [PMID: 33652823 PMCID: PMC7956786 DOI: 10.3390/ijms22052338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) and Hi-C methods are largely used to investigate the three-dimensional organization of the genome in the cell nucleus and are applied here to study the organization of genes (LMBR1, NOM1, MNX1, UBE3C, PTPRN2) localized in the human 7q36.3 band. This region contains the MNX1 gene, which is normally not expressed in human lymphocytes beyond embryonic development. However, this homeobox gene is frequently activated in leukemic cells and its expression is associated with an altered gene positioning in the leukemia cell nuclei. In this study, we used FISH on 3D-preserved nuclei to investigate the nuclear positioning of MNX1 in the leukemia-derived cell line K562. Of the five copies of the MNX1 gene present in K562, four alleles were positioned in the nuclear periphery and only one in the nuclear interior. Using the Juicebox’s Hi-C dataset, we identified five chromatin loops in the 7q36.3 band, with different extensions related to the size and orientation of the genes located here, and independent from their expression levels. We identified similar loops in 11 human and three mouse cell lines, showing that these loops are highly conserved in different human cell lines and during evolution. Moreover, the chromatin loop organization is well conserved also during neuronal cell differentiation, showing consistency in genomic organization of this region in development. In this report, we show that FISH and Hi-C are two different approaches that complement one another and together give complete information on the nuclear organization of specific chromosomal regions in different conditions, including cellular differentiation and genetic diseases.
Collapse
|
9
|
Liu S, Gao G, Layer RM, Thorgaard GH, Wiens GD, Leeds TD, Martin KE, Palti Y. Identification of High-Confidence Structural Variants in Domesticated Rainbow Trout Using Whole-Genome Sequencing. Front Genet 2021; 12:639355. [PMID: 33732289 PMCID: PMC7959816 DOI: 10.3389/fgene.2021.639355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic structural variants (SVs) are a major source of genetic and phenotypic variation but have not been investigated systematically in rainbow trout (Oncorhynchus mykiss), an important aquaculture species of cold freshwater. The objectives of this study were 1) to identify and validate high-confidence SVs in rainbow trout using whole-genome re-sequencing; and 2) to examine the contribution of transposable elements (TEs) to SVs in rainbow trout. A total of 96 rainbow trout, including 11 homozygous lines and 85 outbred fish from three breeding populations, were whole-genome sequenced with an average genome coverage of 17.2×. Putative SVs were identified using the program Smoove which integrates LUMPY and other associated tools into one package. After rigorous filtering, 13,863 high-confidence SVs were identified. Pacific Biosciences long-reads of Arlee, one of the homozygous lines used for SV detection, validated 98% (3,948 of 4,030) of the high-confidence SVs identified in the Arlee homozygous line. Based on principal component analysis, the 85 outbred fish clustered into three groups consistent with their populations of origin, further indicating that the high-confidence SVs identified in this study are robust. The repetitive DNA content of the high-confidence SV sequences was 86.5%, which is much higher than the 57.1% repetitive DNA content of the reference genome, and is also higher than the repetitive DNA content of Atlantic salmon SVs reported previously. TEs thus contribute substantially to SVs in rainbow trout as TEs make up the majority of repetitive sequences. Hundreds of the high-confidence SVs were annotated as exon-loss or gene-fusion variants, and may have phenotypic effects. The high-confidence SVs reported in this study provide a foundation for further rainbow trout SV studies.
Collapse
Affiliation(s)
- Sixin Liu
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States.,Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Gary H Thorgaard
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | | | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| |
Collapse
|
10
|
Jakubosky D, Smith EN, D'Antonio M, Jan Bonder M, Young Greenwald WW, D'Antonio-Chronowska A, Matsui H, Stegle O, Montgomery SB, DeBoever C, Frazer KA. Discovery and quality analysis of a comprehensive set of structural variants and short tandem repeats. Nat Commun 2020; 11:2928. [PMID: 32522985 PMCID: PMC7287045 DOI: 10.1038/s41467-020-16481-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Structural variants (SVs) and short tandem repeats (STRs) are important sources of genetic diversity but are not routinely analyzed in genetic studies because they are difficult to accurately identify and genotype. Because SVs and STRs range in size and type, it is necessary to apply multiple algorithms that incorporate different types of evidence from sequencing data and employ complex filtering strategies to discover a comprehensive set of high-quality and reproducible variants. Here we assemble a set of 719 deep whole genome sequencing (WGS) samples (mean 42×) from 477 distinct individuals which we use to discover and genotype a wide spectrum of SV and STR variants using five algorithms. We use 177 unique pairs of genetic replicates to identify factors that affect variant call reproducibility and develop a systematic filtering strategy to create of one of the most complete and well characterized maps of SVs and STRs to date.
Collapse
Affiliation(s)
- David Jakubosky
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92093-0419, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, 92093-0419, USA
| | - Erin N Smith
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Matteo D'Antonio
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - William W Young Greenwald
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Christopher DeBoever
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Shi L, Huang H, Jiang Q, Huang R, Fu W, Mao L, Wei X, Cui H, Lin K, Cai L, Yang Y, Wang Y, Wu J. Sub-Exome Target Sequencing in a Family With Syndactyly Type IV Due to a Novel Partial Duplication of the LMBR1 Gene: First Case Report in Fujian Province of China. Front Genet 2020; 11:130. [PMID: 32184803 PMCID: PMC7058806 DOI: 10.3389/fgene.2020.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/03/2020] [Indexed: 12/30/2022] Open
Abstract
Syndactyly is one of the most frequent hereditary limb malformations with clinical and genetical complexity. Autosomal dominant syndactyly type IV (SD4) is a rare form of syndactyly, caused by heterozygous mutations in a sonic hedgehog (SHH) regulatory element (ZRS) which resides in intron 5 of the LMBR1 gene on chromosome 7q36.3. SD4 is characterized by complete cutaneous syndactyly of the fingers, accompanied by cup-shaped hands due to flexion of the fingers and polydactyly. Here, for the first time, we reported a large Chinese family from Fujian province, manifesting cup-shaped hands consistent with SD4 and intrafamilial heterogeneity in clinical phenotype of tibial and fibulal shortening, triphalangeal thumb-polysyndactyly syndrome (TPTPS). We identified a novel duplication of ∼222 kb covering exons 2–17 of the LMBR1 gene in this family by sub-exome target sequencing. This case expands our new clinical understanding of SD4 phenotype and again confirms the feasibility to detect copy number variation by sub-exome target sequencing.
Collapse
Affiliation(s)
- Lijing Shi
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Qiuxia Jiang
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Rongsen Huang
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Wanyu Fu
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Liangwei Mao
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Xiaoming Wei
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China
| | | | - Keke Lin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Licheng Cai
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou, China
| | - You Yang
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou, China
| | - Yuanbai Wang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Jing Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
12
|
Catanach A, Crowhurst R, Deng C, David C, Bernatchez L, Wellenreuther M. The genomic pool of standing structural variation outnumbers single nucleotide polymorphism by threefold in the marine teleost Chrysophrys auratus. Mol Ecol 2019; 28:1210-1223. [PMID: 30770610 DOI: 10.1111/mec.15051] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Recent studies have highlighted an important role of structural variation (SV) in ecological and evolutionary processes, but few have studied nonmodel species in the wild. As part of our long-term research programme on the nonmodel teleost fish Australasian snapper (Chrysophrys auratus), we aim to build one of the first catalogues of genomic variants (SNPs and indels, and deletions, duplications and inversions) in fishes and evaluate overlap of genomic variants with regions under putative selection (Tajima's D and π), and coding sequences (genes). For this, we analysed six males and six females from three locations in New Zealand and generated a high-resolution genomic variation catalogue. We characterized 20,385 SVs and found they intersected with almost a third of all annotated genes. Together with small indels, SVs account for three times more variation in the genome in terms of bases affected compared to SNPs. We found that a sizeable portion of detected SVs was in the upper and lower genomic regions of Tajima's D and π, indicating that some of these have an effect on the phenotype. Together, these results shed light on the often neglected genomic variation that is produced by SVs and highlights the need to go beyond the mere measure of SNPs when investigating evolutionary processes, such as species diversification and adaptation.
Collapse
Affiliation(s)
- Andrew Catanach
- The New Zealand Institute for Plant & Food Research Ltd, Lincoln, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Charles David
- The New Zealand Institute for Plant & Food Research Ltd, Lincoln, New Zealand
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Ghavi-Helm Y. Functional Consequences of Chromosomal Rearrangements on Gene Expression: Not So Deleterious After All? J Mol Biol 2019; 432:665-675. [PMID: 31626801 DOI: 10.1016/j.jmb.2019.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Chromosomes are folded and organized into topologically associating domains (TADs) which provide a framework for the interaction of enhancers with the promoter of their target gene(s). Structural rearrangements observed during evolution or in disease contexts suggest that changes in genome organization strongly affect gene expression and can have drastic phenotypic effects. In this review, I will discuss how recent genomic engineering experiments reveal a more contrasted picture, suggesting that TADs are important but not always essential for gene expression regulation.
Collapse
Affiliation(s)
- Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée D'Italie, F-69364 Lyon, France.
| |
Collapse
|
14
|
Moisan S, Le Nabec A, Quillévéré A, Le Maréchal C, Férec C. Characterization of GJB2 cis-regulatory elements in the DFNB1 locus. Hum Genet 2019; 138:1275-1286. [PMID: 31586237 DOI: 10.1007/s00439-019-02068-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/29/2019] [Indexed: 11/28/2022]
Abstract
Although most disease-causing variants are within coding region of genes, it is now well established that cis-acting regulatory sequences, depending on 3D-chromatin organization, are required for temporal and spatial control of gene expression. Disruptions of such regulatory elements and/or chromatin conformation are likely to play a critical role in human genetic disease. Hence, recurrent monoallelic cases, who present the most common hereditary type of nonsyndromic hearing loss (i.e., DFNB1), carry only one identified pathogenic allele. This strongly suggests the presence of uncharacterized distal cis-acting elements in the missing allele. Here within, we study the spatial organization of a large DFNB1 locus encompassing the gap junction protein beta 2 (GJB2) gene, the most frequently mutated gene in this inherited hearing loss phenotype, with the chromosome conformation capture carbon copy technology (5C). By combining this approach with functional activity reporter assays and mapping of CCCTC-binding factor (CTCF) along the DFNB1 locus, we identify a novel set of cooperating GJB2 cis-acting elements and suggest a DFNB1 three-dimensional looping regulation model.
Collapse
Affiliation(s)
- Stéphanie Moisan
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU de Brest, Bretagne, Brest, France. .,Univ Brest, Inserm, EFS UMR 1078, GGB, 29200, Brest, France.
| | - Anaïs Le Nabec
- Univ Brest, Inserm, EFS UMR 1078, GGB, 29200, Brest, France
| | | | - Cédric Le Maréchal
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU de Brest, Bretagne, Brest, France.,Univ Brest, Inserm, EFS UMR 1078, GGB, 29200, Brest, France
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU de Brest, Bretagne, Brest, France. .,Univ Brest, Inserm, EFS UMR 1078, GGB, 29200, Brest, France.
| |
Collapse
|
15
|
Genetic Variation in Long-Range Enhancers. Curr Top Behav Neurosci 2019; 42:35-50. [PMID: 31396896 DOI: 10.1007/7854_2019_110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cis-regulatory elements (CREs), including insulators, promoters, and enhancers, play critical roles in the establishment and maintenance of normal cellular function. Within each cell, the 3D structure of chromatin is arranged in specific patterns to expose the CREs required for optimal spatiotemporal regulation of gene expression. CREs can act over large distances along the linear genome, facilitated by looping of the intervening chromatin to allow direct interaction between distal regulatory elements and their target genes. A number of pathologies are associated with dysregulation of CRE function, including developmental disorders, cancers, and neuropsychiatric disease. A majority of known neuropsychiatric disease risk loci are noncoding, and increasing evidence suggests that they contribute to disease through disruption of CREs. As such, rather than directly altering the amino acid content of proteins, these variants are instead thought to affect where, when, and to what extent a given gene is expressed. The distances over which CREs can operate often render their target genes difficult to identify. Furthermore, as many risk loci contain multiple variants in high linkage disequilibrium, identification of the causative single nucleotide polymorphism(s) therein is not straightforward. Thus, deciphering the genetic etiology of complex neuropsychiatric disorders presents a significant challenge.
Collapse
|
16
|
Abstract
Structural and quantitative chromosomal rearrangements, collectively referred to as structural variation (SV), contribute to a large extent to the genetic diversity of the human genome and thus are of high relevance for cancer genetics, rare diseases and evolutionary genetics. Recent studies have shown that SVs can not only affect gene dosage but also modulate basic mechanisms of gene regulation. SVs can alter the copy number of regulatory elements or modify the 3D genome by disrupting higher-order chromatin organization such as topologically associating domains. As a result of these position effects, SVs can influence the expression of genes distant from the SV breakpoints, thereby causing disease. The impact of SVs on the 3D genome and on gene expression regulation has to be considered when interpreting the pathogenic potential of these variant types.
Collapse
Affiliation(s)
- Malte Spielmann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany. .,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Abstract
Craniosynostosis refers to a condition during early development in which one or more of the fibrous sutures of the skull prematurely fuse by turning into bone, which produces recognizable patterns of cranial shape malformations depending on which suture(s) are affected. In addition to cases with isolated cranial dysmorphologies, craniosynostosis appears in syndromes that include skeletal features of the eyes, nose, palate, hands, and feet as well as impairment of vision, hearing, and intellectual development. Approximately 85% of the cases are nonsyndromic sporadic and emerge after de novo structural genome rearrangements or single nucleotide variation, while the remainders consist of syndromic cases following mendelian inheritance. By karyotyping, genome wide linkage, and CNV analyses as well as by whole exome and whole genome sequencing, numerous candidate genes for craniosynostosis belonging to the FGF, Wnt, BMP, Ras/ERK, ephrin, hedgehog, STAT, and retinoic acid signaling pathways have been identified. Many of the craniosynostosis-related candidate genes form a functional network based upon protein-protein or protein-DNA interactions. Depending on which node of this craniosynostosis-related network is affected by a gene mutation or a change in gene expression pattern, a distinct craniosynostosis syndrome or set of phenotypes ensues. Structural variations may alter the dosage of one or several genes or disrupt the genomic architecture of genes and their regulatory elements within topologically associated chromatin domains. These may exert dominant effects by either haploinsufficiency, dominant negative partial loss of function, gain of function, epistatic interaction, or alteration of levels and patterns of gene expression during development. Molecular mechanisms of dominant modes of action of these mutations may include loss of one or several binding sites for cognate protein partners or transcription factor binding sequences. Such losses affect interactions within functional networks governing development and consequently result in phenotypes such as craniosynostosis. Many of the novel variants identified by genome wide CNV analyses, whole exome and whole genome sequencing are incorporated in recently developed diagnostic algorithms for craniosynostosis.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Niu M, Tabari E, Ni P, Su Z. Towards a map of cis-regulatory sequences in the human genome. Nucleic Acids Res 2018; 46:5395-5409. [PMID: 29733395 PMCID: PMC6009671 DOI: 10.1093/nar/gky338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that transcription factor (TF) binding sites, or cis-regulatory elements (CREs), and their clusters termed cis-regulatory modules (CRMs) play a more important role than do gene-coding sequences in specifying complex traits in humans, including the susceptibility to common complex diseases. To fully characterize their roles in deriving the complex traits/diseases, it is necessary to annotate all CREs and CRMs encoded in the human genome. However, the current annotations of CREs and CRMs in the human genome are still very limited and mostly coarse-grained, as they often lack the detailed information of CREs in CRMs. Here, we integrated 620 TF ChIP-seq datasets produced by the ENCODE project for 168 TFs in 79 different cell/tissue types and predicted an unprecedentedly completely map of CREs in CRMs in the human genome at single nucleotide resolution. The map includes 305 912 CRMs containing a total of 1 178 913 CREs belonging to 736 unique TF binding motifs. The predicted CREs and CRMs tend to be subject to either purifying selection or positive selection, thus are likely to be functional. Based on the results, we also examined the status of available ChIP-seq datasets for predicting the entire regulatory genome of humans.
Collapse
Affiliation(s)
- Meng Niu
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Ehsan Tabari
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Pengyu Ni
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
19
|
Cutrupi AN, Brewer MH, Nicholson GA, Kennerson M. Structural variations causing inherited peripheral neuropathies: A paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol Genet Genomic Med 2018; 6:422-433. [PMID: 29573232 PMCID: PMC6014456 DOI: 10.1002/mgg3.390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a clinically and genetically heterogeneous group of diseases affecting the motor and sensory peripheral nerves. IPNs have benefited from gene discovery and genetic diagnosis using next-generation sequencing with over 80 causative genes available for testing. Despite this success, up to 50% of cases remain genetically unsolved. In the absence of protein coding mutations, noncoding DNA or structural variation (SV) mutations are a possible explanation. The most common IPN, Charcot-Marie-Tooth neuropathy type 1A (CMT1A), is caused by a 1.5 Mb duplication causing trisomy of the dosage sensitive gene PMP22. Using genome sequencing, we recently identified two large genomic rearrangements causing IPN subtypes X-linked CMT (CMTX3) and distal hereditary motor neuropathy (DHMN1), thereby expanding the spectrum of SV mutations causing IPN. Understanding how newly discovered SVs can cause IPN may serve as a useful paradigm to examine the role of topologically associated domains (TADs), chromatin interactions, and gene dysregulation in disease. This review will describe the growing role of SV in the pathogenesis of IPN and the importance of considering this type of mutation in Mendelian diseases where protein coding mutations cannot be identified.
Collapse
Affiliation(s)
- Anthony N. Cutrupi
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Megan H. Brewer
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Garth A. Nicholson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| | - Marina L. Kennerson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| |
Collapse
|
20
|
Wanke KA, Devanna P, Vernes SC. Understanding Neurodevelopmental Disorders: The Promise of Regulatory Variation in the 3'UTRome. Biol Psychiatry 2018; 83:548-557. [PMID: 29289333 DOI: 10.1016/j.biopsych.2017.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/28/2023]
Abstract
Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1% to 2% of the human genome. With the advent of whole genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and noncoding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of noncoding variants identified per individual can be overwhelming, making it prudent to focus on noncoding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3'UTRome is a region of the noncoding genome that perfectly fulfills these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3'UTRome as binding sites for microRNAs or RNA binding proteins, or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3'UTRome will lead to the identification of new risk factors, new candidate disease genes, and a better understanding of the molecular mechanisms contributing to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kai A Wanke
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
21
|
Large genomic insertion at the Shh locus results in hammer toes through enhancer adoption. Proc Natl Acad Sci U S A 2018; 115:839-841. [PMID: 29330329 DOI: 10.1073/pnas.1721351115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Enhancer adoption caused by genomic insertion elicits interdigital Shh expression and syndactyly in mouse. Proc Natl Acad Sci U S A 2017; 115:1021-1026. [PMID: 29255029 PMCID: PMC5798340 DOI: 10.1073/pnas.1713339115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we reexamined an old mouse mutant named Hammer toe (Hm), which arose spontaneously almost a half century ago and exhibits a limb phenotype with webbing. We revealed that a 150-kb noncoding genomic fragment that was originally located in chromosome 14 has been inserted into a genomic region proximal to Sonic hedgehog (Shh), located in chromosome 5. This inserted fragment possesses enhancer activity to induce Shh expression in the interdigital regions in Hm, which in turn down-regulates bone morphogenetic protein signaling and eventually results in syndactyly and web formation. Since the donor fragment residing in chromosome 14 has enhancer activity to induce interdigital gene expression, the Hm mutation appears to be an archetypal case of enhancer adoption. Acquisition of new cis-regulatory elements (CREs) can cause alteration of developmental gene regulation and may introduce morphological novelty in evolution. Although structural variation in the genome generated by chromosomal rearrangement is one possible source of new CREs, only a few examples are known, except for cases of retrotransposition. In this study, we show the acquisition of novel regulatory sequences as a result of large genomic insertion in the spontaneous mouse mutation Hammer toe (Hm). Hm mice exhibit syndactyly with webbing, due to suppression of interdigital cell death in limb development. We reveal that, in the Hm genome, a 150-kb noncoding DNA fragment from chromosome 14 is inserted into the region upstream of the Sonic hedgehog (Shh) promoter in chromosome 5. Phenotyping of mouse embryos with a series of CRISPR/Cas9-aided partial deletion of the 150-kb insert clearly indicated that two different regions are necessary for the syndactyly phenotype of Hm. We found that each of the two regions contains at least one enhancer for interdigital regulation. These results show that a set of enhancers brought by the large genomic insertion elicits the interdigital Shh expression and the Hm phenotype. Transcriptome analysis indicates that ectopic expression of Shh up-regulates Chordin (Chrd) that antagonizes bone morphogenetic protein signaling in the interdigital region. Indeed, Chrd-overexpressing transgenic mice recapitulated syndactyly with webbing. Thus, the Hm mutation provides an insight into enhancer acquisition as a source of creation of novel gene regulation.
Collapse
|
23
|
Noncoding copy-number variations are associated with congenital limb malformation. Genet Med 2017; 20:599-607. [PMID: 29236091 DOI: 10.1038/gim.2017.154] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/17/2023] Open
Abstract
PurposeCopy-number variants (CNVs) are generally interpreted by linking the effects of gene dosage with phenotypes. The clinical interpretation of noncoding CNVs remains challenging. We investigated the percentage of disease-associated CNVs in patients with congenital limb malformations that affect noncoding cis-regulatory sequences versus genes sensitive to gene dosage effects.MethodsWe applied high-resolution copy-number analysis to 340 unrelated individuals with isolated limb malformation. To investigate novel candidate CNVs, we re-engineered human CNVs in mice using clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing.ResultsOf the individuals studied, 10% harbored CNVs segregating with the phenotype in the affected families. We identified 31 CNVs previously associated with congenital limb malformations and four novel candidate CNVs. Most of the disease-associated CNVs (57%) affected the noncoding cis-regulatory genome, while only 43% included a known disease gene and were likely to result from gene dosage effects. In transgenic mice harboring four novel candidate CNVs, we observed altered gene expression in all cases, indicating that the CNVs had a regulatory effect either by changing the enhancer dosage or altering the topological associating domain architecture of the genome.ConclusionOur findings suggest that CNVs affecting noncoding regulatory elements are a major cause of congenital limb malformations.
Collapse
|
24
|
Protas ME, Weh E, Footz T, Kasberger J, Baraban SC, Levin AV, Katz LJ, Ritch R, Walter MA, Semina EV, Gould DB. Mutations of conserved non-coding elements of PITX2 in patients with ocular dysgenesis and developmental glaucoma. Hum Mol Genet 2017; 26:3630-3638. [PMID: 28911203 PMCID: PMC5886142 DOI: 10.1093/hmg/ddx251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/09/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in FOXC1 and PITX2 constitute the most common causes of ocular anterior segment dysgenesis (ASD), and confer a high risk for secondary glaucoma. The genetic causes underlying ASD in approximately half of patients remain unknown, despite many of them being screened by whole exome sequencing. Here, we performed whole genome sequencing on DNA from two affected individuals from a family with dominantly inherited ASD and glaucoma to identify a 748-kb deletion in a gene desert that contains conserved putative PITX2 regulatory elements. We used CRISPR/Cas9 to delete the orthologous region in zebrafish in order to test the pathogenicity of this structural variant. Deletion in zebrafish reduced pitx2 expression during development and resulted in shallow anterior chambers. We screened additional patients for copy number variation of the putative regulatory elements and found an overlapping deletion in a second family and in a potentially-ancestrally-related index patient with ASD and glaucoma. These data suggest that mutations affecting conserved non-coding elements of PITX2 may constitute an important class of mutations in patients with ASD for whom the molecular cause of their disease have not yet been identified. Improved functional annotation of the human genome and transition to sequencing of patient genomes instead of exomes will be required before the magnitude of this class of mutations is fully understood.
Collapse
Affiliation(s)
- Meredith E. Protas
- Departments of Ophthalmology and Anatomy and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Eric Weh
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tim Footz
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jay Kasberger
- Celgene Quanticel Research, San Francisco, CA 94158, USA
| | - Scott C. Baraban
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Alex V. Levin
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - L. Jay Katz
- Glaucoma Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert Ritch
- Einhorn Clinical Research Center, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Michael A. Walter
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Elena V. Semina
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Douglas B. Gould
- Departments of Ophthalmology and Anatomy and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Cornils K, Thielecke L, Winkelmann D, Aranyossy T, Lesche M, Dahl A, Roeder I, Fehse B, Glauche I. Clonal competition in BcrAbl-driven leukemia: how transplantations can accelerate clonal conversion. Mol Cancer 2017; 16:120. [PMID: 28709463 PMCID: PMC5512731 DOI: 10.1186/s12943-017-0668-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Background Clonal competition in cancer describes the process in which the progeny of a cell clone supersedes or succumbs to other competing clones due to differences in their functional characteristics, mostly based on subsequently acquired mutations. Even though the patterns of those mutations are well explored in many tumors, the dynamical process of clonal selection is underexposed. Methods We studied the dynamics of clonal competition in a BcrAbl-induced leukemia using a γ-retroviral vector library encoding the oncogene in conjunction with genetic barcodes. To this end, we studied the growth dynamics of transduced cells on the clonal level both in vitro and in vivo in transplanted mice. Results While we detected moderate changes in clonal abundancies in vitro, we observed monoclonal leukemias in 6/30 mice after transplantation, which intriguingly were caused by only two different BcrAbl clones. To analyze the success of these clones, we applied a mathematical model of hematopoietic tissue maintenance, which indicated that a differential engraftment capacity of these two dominant clones provides a possible explanation of our observations. These findings were further supported by additional transplantation experiments and increased BcrAbl transcript levels in both clones. Conclusion Our findings show that clonal competition is not an absolute process based on mutations, but highly dependent on selection mechanisms in a given environmental context. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0668-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerstin Cornils
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Present Adress: University Medical Center Hamburg-Eppendorf, Pediatric Hematology and Oncology & Research Institute Children's Cancer Center Hamburg, Martinistr. 52, 20246, Hamburg, Germany.
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Doreen Winkelmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Aranyossy
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Lesche
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
26
|
Middelkamp S, van Heesch S, Braat AK, de Ligt J, van Iterson M, Simonis M, van Roosmalen MJ, Kelder MJE, Kruisselbrink E, Hochstenbach R, Verbeek NE, Ippel EF, Adolfs Y, Pasterkamp RJ, Kloosterman WP, Kuijk EW, Cuppen E. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med 2017; 9:9. [PMID: 28126037 PMCID: PMC5270341 DOI: 10.1186/s13073-017-0399-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the phenotypes of patients with complex germline genomic rearrangements is generally unknown. Methods To dissect the impact of germline chromothripsis in a relevant developmental context, we performed trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq experiments were performed to determine the effects of the genomic rearrangements on transcription regulation of genes in the proximity of the breakpoint junctions. Results Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving 17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on TWIST1 expression was exclusively detectable in the patient’s iPSC-derived neuronal cells, stressing the need for studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely led to deregulation of TWIST1 expression and contributed to the patient’s craniosynostosis phenotype. Conclusions We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements. Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to the complex congenital phenotype resulting from germline chromothripsis rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0399-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Sebastiaan van Heesch
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.,Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Strasse 10, Berlin, 13125, Germany
| | - A Koen Braat
- Department of Cell Biology, Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, 3584CT, The Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Maarten van Iterson
- Department of Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333ZC, The Netherlands
| | - Marieke Simonis
- Cergentis B.V., Yalelaan 62, Utrecht, 3584CM, The Netherlands
| | - Markus J van Roosmalen
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Martijn J E Kelder
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology & Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Ron Hochstenbach
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Elly F Ippel
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Wigard P Kloosterman
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Ewart W Kuijk
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
| | - Edwin Cuppen
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
| |
Collapse
|
27
|
Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach. Hum Genet 2016; 136:13-37. [PMID: 27896429 PMCID: PMC5214768 DOI: 10.1007/s00439-016-1749-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual’s genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a “systems biology” overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.
Collapse
|
28
|
Annunziatella C, Chiariello AM, Bianco S, Nicodemi M. Polymer models of the hierarchical folding of the Hox-B chromosomal locus. Phys Rev E 2016; 94:042402. [PMID: 27841585 DOI: 10.1103/physreve.94.042402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 06/06/2023]
Abstract
As revealed by novel technologies, chromosomes in the nucleus of mammalian cells have a complex spatial organization that serves vital functional purposes. Here we use models from polymer physics to identify the mechanisms that control their three-dimensional spatial organization. In particular, we investigate a model of the Hox-B locus, an important genomic region involved in embryo development, to expose the principles regulating chromatin folding and its complex behaviors in mouse embryonic stem cells. We reconstruct with high accuracy the pairwise contact matrix of the Hox-B locus as derived by Hi-C experiments and investigate its hierarchical folding dynamics. We trace back the observed behaviors to general scaling properties of polymer physics.
Collapse
Affiliation(s)
- Carlo Annunziatella
- Dipartimento di Fisica, Universitá di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Universitá di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Universitá di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Universitá di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| |
Collapse
|
29
|
Brewer MH, Chaudhry R, Qi J, Kidambi A, Drew AP, Menezes MP, Ryan MM, Farrar MA, Mowat D, Subramanian GM, Young HK, Zuchner S, Reddel SW, Nicholson GA, Kennerson ML. Whole Genome Sequencing Identifies a 78 kb Insertion from Chromosome 8 as the Cause of Charcot-Marie-Tooth Neuropathy CMTX3. PLoS Genet 2016; 12:e1006177. [PMID: 27438001 PMCID: PMC4954712 DOI: 10.1371/journal.pgen.1006177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022] Open
Abstract
With the advent of whole exome sequencing, cases where no pathogenic coding mutations can be found are increasingly being observed in many diseases. In two large, distantly-related families that mapped to the Charcot-Marie-Tooth neuropathy CMTX3 locus at chromosome Xq26.3-q27.3, all coding mutations were excluded. Using whole genome sequencing we found a large DNA interchromosomal insertion within the CMTX3 locus. The 78 kb insertion originates from chromosome 8q24.3, segregates fully with the disease in the two families, and is absent from the general population as well as 627 neurologically normal chromosomes from in-house controls. Large insertions into chromosome Xq27.1 are known to cause a range of diseases and this is the first neuropathy phenotype caused by an interchromosomal insertion at this locus. The CMTX3 insertion represents an understudied pathogenic structural variation mechanism for inherited peripheral neuropathies. Our finding highlights the importance of considering all structural variation types when studying unsolved inherited peripheral neuropathy cases with no pathogenic coding mutations.
Collapse
Affiliation(s)
- Megan H. Brewer
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| | - Rabia Chaudhry
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Jessica Qi
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Discipline of Pathology, University of Sydney, Camperdown, New South Wales, Australia
| | - Aditi Kidambi
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
| | - Alexander P. Drew
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
| | - Manoj P. Menezes
- The Institute for Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- Paediatrics and Child Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Monique M. Ryan
- Department of Neurology, Royal Children’s Hospital, Parkville, Victoria, Australia
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle A. Farrar
- Department of Neurology, Sydney Children’s Hospital, Randwick, New South Wales, Australia
- School of Women’s and Children’s Health, UNSW Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - David Mowat
- School of Women’s and Children’s Health, UNSW Medicine, University of New South Wales, Kensington, New South Wales, Australia
- Department of Medical Genetics, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Gopinath M. Subramanian
- Department of Paediatrics, John Hunter Children’s Hospital, Newcastle, New South Wales, Australia
| | - Helen K. Young
- Department of Paediatrics, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Northern Clinical School, Sydney Medical School, University of Sydney, St Leonards, New South Wales, Australia
- Department of Neurogenetics, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Stephan Zuchner
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Stephen W. Reddel
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Garth A. Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Marina L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
30
|
Chiariello AM, Annunziatella C, Bianco S, Esposito A, Nicodemi M. Polymer physics of chromosome large-scale 3D organisation. Sci Rep 2016; 6:29775. [PMID: 27405443 PMCID: PMC4942835 DOI: 10.1038/srep29775] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.
Collapse
Affiliation(s)
- Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| |
Collapse
|
31
|
Spielmann M, Mundlos S. Looking beyond the genes: the role of non-coding variants in human disease. Hum Mol Genet 2016; 25:R157-R165. [PMID: 27354350 DOI: 10.1093/hmg/ddw205] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Over the past decades the search for disease causing variants has been focusing exclusively on the coding genome. This highly selective approach has been extremely successful resulting in the identification of thousands of disease genes, but ignores the functional and therefore disease relevance of the rest of the genome. Dropping sequencing costs and new high-throughput technologies such as ChIP-seq and chromosome conformation capture have opened new possibilities for the systematic investigation of the non-coding genome. These data have revealed the importance of non-coding DNA in fundamental processes such as gene regulation and 3D chromatin folding. Research into the principles of chromatin folding has revealed a domain structure of the genome, called topologically associated domains that provide a scaffold for enhancer promoter contacts. Non-coding mutations that affect regulatory elements can affect gene regulation by a loss of function, resulting in reduced gene expression, or a gain of function resulting in gene mis- or overexpression. Structural variations such as deletions, inversions or duplications have the potential to disturb normal chromatin folding. This may lead to the repositioning or disruption of topological associating domains and the relocation of enhancer elements with consecutive gene misexpression. Several recent studies highlight this as important disease mechanisms in developmental disorders and cancer. Therefore, the regulatory landscape of the genome has to be taken into consideration when investigating the pathology of human disease. In this review, we will discuss the recent discoveries in the field of non-coding variation, gene regulation, 3D genome architecture, and their implications for human genetics.
Collapse
Affiliation(s)
- Malte Spielmann
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
32
|
Poot M. A Loss or a Gain, Is It Not All the Same? Mol Syndromol 2016; 7:1-2. [PMID: 27194966 DOI: 10.1159/000443814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
|
33
|
Abstract
Intellectual disability is the most common developmental disorder characterized by a congenital limitation in intellectual functioning and adaptive behavior. It often co-occurs with other mental conditions like attention deficit/hyperactivity disorder and autism spectrum disorder, and can be part of a malformation syndrome that affects other organs. Considering the heterogeneity of its causes (environmental and genetic), its frequency worldwide varies greatly. This review focuses on known genes underlying (syndromic and non-syndromic) intellectual disability, it provides a succinct analysis of their Gene Ontology, and it suggests the use of transcriptional profiling for the prioritization of candidate genes.
Collapse
Affiliation(s)
- Pietro Chiurazzi
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Filomena Pirozzi
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: How Alterations of Chromatin Domains Result in Disease. Trends Genet 2016; 32:225-237. [DOI: 10.1016/j.tig.2016.01.003] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
|
35
|
Fraser J, Ferrai C, Chiariello AM, Schueler M, Rito T, Laudanno G, Barbieri M, Moore BL, Kraemer DCA, Aitken S, Xie SQ, Morris KJ, Itoh M, Kawaji H, Jaeger I, Hayashizaki Y, Carninci P, Forrest ARR, Semple CA, Dostie J, Pombo A, Nicodemi M. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol Syst Biol 2015; 11:852. [PMID: 26700852 PMCID: PMC4704492 DOI: 10.15252/msb.20156492] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.
Collapse
Affiliation(s)
- James Fraser
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | - Carmelo Ferrai
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany Genome Function Group, MRC Clinical Sciences Centre, Imperial College London Hammersmith Hospital Campus, London, UK
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II INFN Napoli CNR-SPIN Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Markus Schueler
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | - Tiago Rito
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | - Giovanni Laudanno
- Dipartimento di Fisica, Università di Napoli Federico II INFN Napoli CNR-SPIN Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Mariano Barbieri
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | - Benjamin L Moore
- MRC Human Genetics Unit, MRC IGMM University of Edinburgh, Edinburgh, UK
| | - Dorothee C A Kraemer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC IGMM University of Edinburgh, Edinburgh, UK
| | - Sheila Q Xie
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College London Hammersmith Hospital Campus, London, UK
| | - Kelly J Morris
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany Genome Function Group, MRC Clinical Sciences Centre, Imperial College London Hammersmith Hospital Campus, London, UK
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako Saitama, Japan Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama Kanagawa, Japan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako Saitama, Japan Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama Kanagawa, Japan
| | - Ines Jaeger
- Stem Cell Neurogenesis Group, MRC Clinical Sciences Centre, Imperial College London Hammersmith Hospital Campus, London, UK
| | | | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama Kanagawa, Japan
| | - Alistair R R Forrest
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama Kanagawa, Japan
| | | | - Colin A Semple
- MRC Human Genetics Unit, MRC IGMM University of Edinburgh, Edinburgh, UK
| | - Josée Dostie
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany Genome Function Group, MRC Clinical Sciences Centre, Imperial College London Hammersmith Hospital Campus, London, UK
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II INFN Napoli CNR-SPIN Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
36
|
Abstract
Genetic factors play a major part in intellectual disability (ID), but genetic studies have been complicated for a long time by the extreme clinical and genetic heterogeneity. Recently, progress has been made using different next-generation sequencing approaches in combination with new functional readout systems. This approach has provided novel insights into the biological pathways underlying ID, improved the diagnostic process and offered new targets for therapy. In this Review, we highlight the insights obtained from recent studies on the role of genetics in ID and its impact on diagnosis, prognosis and therapy. We also discuss the future directions of genetics research for ID and related neurodevelopmental disorders.
Collapse
|
37
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
Flöttmann R, Wagner J, Kobus K, Curry CJ, Savarirayan R, Nishimura G, Yasui N, Spranger J, Van Esch H, Lyons MJ, DuPont BR, Dwivedi A, Klopocki E, Horn D, Mundlos S, Spielmann M. Microdeletions on 6p22.3 are associated with mesomelic dysplasia Savarirayan type. J Med Genet 2015; 52:476-83. [DOI: 10.1136/jmedgenet-2015-103108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/09/2015] [Indexed: 11/04/2022]
|
39
|
Giorgio E, Robyr D, Spielmann M, Ferrero E, Di Gregorio E, Imperiale D, Vaula G, Stamoulis G, Santoni F, Atzori C, Gasparini L, Ferrera D, Canale C, Guipponi M, Pennacchio LA, Antonarakis SE, Brussino A, Brusco A. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD). Hum Mol Genet 2015; 24:3143-54. [PMID: 25701871 PMCID: PMC4424952 DOI: 10.1093/hmg/ddv065] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/13/2015] [Indexed: 01/23/2023] Open
Abstract
Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (∼660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in a postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. This second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.
Collapse
Affiliation(s)
- Elisa Giorgio
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy
| | - Daniel Robyr
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin 14195, Germany
| | - Enza Ferrero
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy
| | - Eleonora Di Gregorio
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy Medical Genetics Unit and
| | - Daniele Imperiale
- Centro Regionale Malattie Da Prioni - Domp (ASLTO2), Torino 10144, Italy
| | - Giovanna Vaula
- Department of Neurology, Città della Salute e della Scienza University Hospital, Torino 10126, Italy
| | - Georgios Stamoulis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Federico Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Cristiana Atzori
- Centro Regionale Malattie Da Prioni - Domp (ASLTO2), Torino 10144, Italy
| | | | | | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa 16163, Italy and
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Len A Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, MS 84-171, Berkeley, CA 9472, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Alessandro Brussino
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy Medical Genetics Unit and
| |
Collapse
|
40
|
Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 2015; 161:1012-1025. [PMID: 25959774 DOI: 10.1016/j.cell.2015.04.004] [Citation(s) in RCA: 1451] [Impact Index Per Article: 145.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/12/2015] [Accepted: 03/24/2015] [Indexed: 12/21/2022]
Abstract
Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome.
Collapse
Affiliation(s)
- Darío G Lupiáñez
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Katerina Kraft
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Verena Heinrich
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Peter Krawitz
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Francesco Brancati
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, 00133 Rome, Italy
| | - Eva Klopocki
- Institute of Human Genetics Biozentrum, Julius Maximilian University of Würzburg, 97070 Würzburg, Germany
| | - Denise Horn
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - John M Opitz
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | - Renata Laxova
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain; U753 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28046 Madrid, Spain
| | | | - Lars Wittler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marina Borschiwer
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marco Osterwalder
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martin Franke
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195 Berlin, Germany
| | - Jochen Hecht
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
41
|
Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, Borschiwer M, Harabula I, Wittler L, Franke M, Ibrahim DM, Kragesteen BK, Spielmann M, Mundlos S, Lupiáñez DG, Andrey G. Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep 2015; 10:833-839. [PMID: 25660031 DOI: 10.1016/j.celrep.2015.01.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 11/25/2022] Open
Abstract
Structural variations (SVs) contribute to the variability of our genome and are often associated with disease. Their study in model systems was hampered until now by labor-intensive genetic targeting procedures and multiple mouse crossing steps. Here we present the use of CRISPR/Cas for the fast (10 weeks) and efficient generation of SVs in mice. We specifically produced deletions, inversions, and also duplications at six different genomic loci ranging from 1.1 kb to 1.6 Mb with efficiencies up to 42%. After PCR-based selection, clones were successfully used to create mice via aggregation. To test the practicability of the method, we reproduced a human 500 kb disease-associated deletion and were able to recapitulate the human phenotype in mice. Furthermore, we evaluated the regulatory potential of a large genomic interval by deleting a 1.5 Mb fragment. The method presented permits rapid in vivo modeling of genomic rearrangements.
Collapse
Affiliation(s)
- Katerina Kraft
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sinje Geuer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Anja J Will
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Wing Lee Chan
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christina Paliou
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Izabela Harabula
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin Franke
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bjørt K Kragesteen
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Darío G Lupiáñez
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Guillaume Andrey
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
42
|
Nicht-kodierende Mutationen. MED GENET-BERLIN 2015. [DOI: 10.1007/s11825-014-0033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zusammenfassung
Trotz der enormen Fortschritte genomweiter Analyseverfahren bleiben über 40 % der Patienten in der Humangenetik ohne molekulare Diagnose. Dies könnte unter anderem an der Tatsache liegen, dass Varianten im nicht-kodierenden Teil des Genoms bisher außer Acht gelassen wurden. In den letzten Jahren wurden entscheidende Fortschritte in der Analyse und Annotierung von cis-regulatorischen Elementen gemacht. Diese Daten können nun gezielt genutzt werden, um regulatorische Mutationen zu identifizieren und zu bewerten. Zudem konnte gezeigt werden, dass das menschliche Genom in Domänen eingeteilt ist, die über Chromatinstrukturen eine dreidimensionale regulatorisch aktive Architektur einnehmen. Mutationen oder strukturelle Aberrationen können diese Struktur verändern und damit zum Funktionsverlust oder zur Fehlexpression von benachbarten Genen führen. All diese Erkenntnisse können zur Interpretation von nicht-kodierenden Varianten eingesetzt werden.
Collapse
|
43
|
Kloosterman WP, Hochstenbach R. Deciphering the pathogenic consequences of chromosomal aberrations in human genetic disease. Mol Cytogenet 2014; 7:100. [PMID: 25606056 PMCID: PMC4299681 DOI: 10.1186/s13039-014-0100-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/08/2014] [Indexed: 01/14/2023] Open
Abstract
Chromosomal aberrations include translocations, deletions, duplications, inversions, aneuploidies and complex rearrangements. They underlie genetic disease in roughly 15% of patients with multiple congenital abnormalities and/or mental retardation (MCA/MR). In genetic diagnostics, the pathogenicity of chromosomal aberrations in these patients is typically assessed based on criteria such as phenotypic similarity to other patients with the same or overlapping aberration, absence in healthy individuals, de novo occurrence, and protein coding gene content. However, a thorough understanding of the molecular mechanisms that lead to MCA/MR as a result of chromosome aberrations is often lacking. Chromosome aberrations can affect one or more genes in a complex manner, such as by changing the regulation of gene expression, by disrupting exons, and by creating fusion genes. The precise delineation of breakpoints by whole-genome sequencing enables the construction of local genomic architecture and facilitates the prediction of the molecular determinants of the patient's phenotype. Here, we review current methods for breakpoint identification and their impact on the interpretation of chromosome aberrations in patients with MCA/MR. In addition, we discuss opportunities to dissect disease mechanisms based on large-scale genomic technologies and studies in model organisms.
Collapse
Affiliation(s)
- Wigard P Kloosterman
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Ron Hochstenbach
- Department of Medical Genetics, Genome Diagnostics, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
44
|
Abstract
The Liebenberg syndrome was first described in 1973 in a five- generation family. A sixth generation was added in 2001, and in 2009 a hitherto unknown branch of the same family with similar anomalies extended the family tree significantly. This article describes the clinical findings and illustrates the abnormalities with radiographs and three-dimensional computed tomography scans. We discuss the genetic abnormality that causes Liebenberg syndrome, the genomic rearrangement at the PITX1 locus on chromosome 5.The structural variations seem to result in an ectopic expression of paired-like homeodomain transcription factor 1 (PITX1) in the forelimb causing a partial arm-to-leg transformation in these patients.
Collapse
Affiliation(s)
- U Mennen
- Jacaranda Hospital, Muckleneuk, Pretoria, South Africa
| | - S Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany FG Development & Disease, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - M Spielmann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany FG Development & Disease, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
45
|
Ibn-Salem J, Köhler S, Love MI, Chung HR, Huang N, Hurles ME, Haendel M, Washington NL, Smedley D, Mungall CJ, Lewis SE, Ott CE, Bauer S, Schofield PN, Mundlos S, Spielmann M, Robinson PN. Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol 2014; 15:423. [PMID: 25315429 PMCID: PMC4180961 DOI: 10.1186/s13059-014-0423-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
Background Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption. Results We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects. Conclusions Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0423-1) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Combes RD, Balls M. Every silver lining has a cloud: the scientific and animal welfare issues surrounding a new approach to the production of transgenic animals. Altern Lab Anim 2014; 42:137-45. [PMID: 24901907 DOI: 10.1177/026119291404200206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The scientific basis and advantages of using recently developed CRISPR/Cas-9 technology for transgenesis have been assessed with respect to other production methods, laboratory animal welfare, and the scientific relevance of transgenic models of human diseases in general. As the new technology is straightforward, causes targeted DNA double strand breaks and can result in homozygous changes in a single step, it is more accurate and more efficient than other production methods and speeds up transgenesis. CRISPR/Cas-9 also obviates the use of embryonic stem cells, and is being used to generate transgenic non-human primates (NHPs). While the use of this method reduces the level of animal wastage resulting from the production of each new strain, any long-term contribution to reduction will be offset by the overall increase in the numbers of transgenic animals likely to result from its widespread usage. Likewise, the contribution to refinement of using a more-precise technique, thereby minimising the occurrence of unwanted genetic effects, will be countered by a probable substantial increase in the production of transgenic strains of increasingly sentient species. For ethical and welfare reasons, we believe that the generation of transgenic NHPs should be allowed only in extremely exceptional circumstances. In addition, we present information, which, on both welfare and scientific grounds, leads us to question the current policy of generating ever-more new transgenic models in light of the general failure of many of them, after over two decades of ubiquitous use, to result in significant advances in the understanding and treatment of many key human diseases. Because this unsatisfactory situation is likely to be due to inherent, as well as possibly avoidable, limitations in the transgenic approach to studying disease, which are briefly reviewed, it is concluded that a thorough reappraisal of the rationale for using genetically-altered animals in fundamental research and by the pharmaceutical industry, and for its support by funding bodies, should be undertaken. In the meantime, the use of CRISPR/Cas-9 to generate new transgenic cells in culture is to be guardedly encouraged.
Collapse
|
47
|
Tayebi N, Jamsheer A, Flöttmann R, Sowinska-Seidler A, Doelken SC, Oehl-Jaschkowitz B, Hülsemann W, Habenicht R, Klopocki E, Mundlos S, Spielmann M. Deletions of exons with regulatory activity at the DYNC1I1 locus are associated with split-hand/split-foot malformation: array CGH screening of 134 unrelated families. Orphanet J Rare Dis 2014; 9:108. [PMID: 25231166 PMCID: PMC4237947 DOI: 10.1186/s13023-014-0108-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/01/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A growing number of non-coding regulatory mutations are being identified in congenital disease. Very recently also some exons of protein coding genes have been identified to act as tissue specific enhancer elements and were therefore termed exonic enhancers or "eExons". METHODS We screened a cohort of 134 unrelated families with split-hand/split-foot malformation (SHFM) with high resolution array CGH for CNVs with regulatory potential. RESULTS In three families with an autosomal dominant non-syndromic SHFM phenotype we detected microdeletions encompassing the exonic enhancer (eExons) 15 and 17 of DYNC1I1. In a fourth family, who had hearing loss in addition to SHFM, we found a larger deletion of 510 kb including the eExons of DYNC1I1 and, in addition, the human brain enhancer hs1642. Exons 15 and 17 of DYNC1I1 are known to act as tissue specific limb enhancers of DLX5/6, two genes that have been shown to be associated with SHFM in mice. In our cohort of 134 unrelated families with SHFM, deletions of the eExons of DYNC1I1 account for approximately 3% of the cases, while 17p13.3 duplications were identified in 13% of the families, 10q24 duplications in 12%, and TP63 mutations were detected in 4%. CONCLUSIONS We reduce the minimal critical region for SHFM1 to 78 kb. Hearing loss, however, appears to be associated with deletions of a more telomeric region encompassing the brain enhancer element hs1642. Thus, SHFM1 as well as hearing loss at the same locus are caused by deletion of regulatory elements. Deletions of the exons with regulatory potential of DYNC1I1 are an example of the emerging role of exonic enhancer elements and their implications in congenital malformation syndromes.
Collapse
|
48
|
Lohan S, Spielmann M, Doelken SC, Flöttmann R, Muhammad F, Baig SM, Wajid M, Hülsemann W, Habenicht R, Kjaer KW, Patil SJ, Girisha KM, Abarca-Barriga HH, Mundlos S, Klopocki E. Microduplications encompassing the Sonic hedgehog limb enhancer ZRS are associated with Haas-type polysyndactyly and Laurin-Sandrow syndrome. Clin Genet 2014; 86:318-25. [PMID: 24456159 DOI: 10.1111/cge.12352] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/17/2022]
Abstract
Laurin-Sandrow syndrome (LSS) is a rare autosomal dominant disorder characterized by polysyndactyly of hands and/or feet, mirror image duplication of the feet, nasal defects, and loss of identity between fibula and tibia. The genetic basis of LSS is currently unknown. LSS shows phenotypic overlap with Haas-type polysyndactyly (HTS) regarding the digital phenotype. Here we report on five unrelated families with overlapping microduplications encompassing the Sonic hedgehog (SHH) limb enhancer ZPA regulatory sequence (ZRS) on chromosome 7q36. Clinically, the patients show polysyndactyly phenotypes and various types of lower limb malformations ranging from syndactyly to mirror image polydactyly with duplications of the fibulae. We show that larger duplications of the ZRS region (>80 kb) are associated with HTS, whereas smaller duplications (<80 kb) result in the LSS phenotype. On the basis of our data, the latter can be clearly distinguished from HTS by the presence of mirror image polysyndactyly of the feet with duplication of the fibula. Our results expand the clinical phenotype of the ZRS-associated syndromes and suggest that smaller duplications (<80 kb) are associated with a more severe phenotype. In addition, we show that these small microduplications within the ZRS region are the underlying genetic cause of Laurin-Sandrow syndrome.
Collapse
Affiliation(s)
- S Lohan
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Max Planck Institute for Molecular Genetics, Research Group Mundlos, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Puckelwartz MJ, Pesce LL, Nelakuditi V, Dellefave-Castillo L, Golbus JR, Day SM, Cappola TP, Dorn GW, Foster IT, McNally EM. Supercomputing for the parallelization of whole genome analysis. Bioinformatics 2014; 30:1508-13. [PMID: 24526712 DOI: 10.1093/bioinformatics/btu071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION The declining cost of generating DNA sequence is promoting an increase in whole genome sequencing, especially as applied to the human genome. Whole genome analysis requires the alignment and comparison of raw sequence data, and results in a computational bottleneck because of limited ability to analyze multiple genomes simultaneously. RESULTS We now adapted a Cray XE6 supercomputer to achieve the parallelization required for concurrent multiple genome analysis. This approach not only markedly speeds computational time but also results in increased usable sequence per genome. Relying on publically available software, the Cray XE6 has the capacity to align and call variants on 240 whole genomes in ∼50 h. Multisample variant calling is also accelerated. AVAILABILITY AND IMPLEMENTATION The MegaSeq workflow is designed to harness the size and memory of the Cray XE6, housed at Argonne National Laboratory, for whole genome analysis in a platform designed to better match current and emerging sequencing volume.
Collapse
Affiliation(s)
- Megan J Puckelwartz
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Lorenzo L Pesce
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Viswateja Nelakuditi
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Lisa Dellefave-Castillo
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Jessica R Golbus
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Sharlene M Day
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Thomas P Cappola
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Gerald W Dorn
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Ian T Foster
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| | - Elizabeth M McNally
- Department of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USADepartment of Medicine, Computation Institute and Argonne National Laboratory, 9700 S. Cass Ave. Argonne, IL 60439, USA, Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave Chicago, IL 60637, USA, Department of Internal Medicine, The University of Michigan, 1150 W Medical Center Dr. Ann Arbor, MI 48109, USA, Perelman School of Medicine, Penn Cardiovascular Institute and Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, USA and Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA
| |
Collapse
|
50
|
Girisha KM, Bidchol AM, Kamath PS, Shah KH, Mortier GR, Mundlos S, Shah H. A novel mutation (g.106737G>T) in zone of polarizing activity regulatory sequence (ZRS) causes variable limb phenotypes in Werner mesomelia. Am J Med Genet A 2014; 164A:898-906. [PMID: 24478176 DOI: 10.1002/ajmg.a.36367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
Werner mesomelia is characterized by a sequence variation in the specific region (position 404) of the enhancer ZRS of SHH. The phenotype comprises variable mesomelia, abnormalities of the thumb and great toe and supernumerary digits. We describe extensive variation in limb phenotype in a large family and report on a novel sequence variation NG_009240.1: g.106737G>T (traditional nomenclature: ZRS404G>T) in the ZRS within the LMBR1 gene. The newly recognized clinical features in this family include small thenar eminence, sandal gap, broad first metatarsals, mesoaxial polydactyly, and postaxial polydactyly. We provide information on 12 affected family members. We review the literature on how a sequence variation in ZRS may cause such diverse phenotypes.
Collapse
Affiliation(s)
- Katta M Girisha
- Division of Medical Genetics, Department of Pediatrics, Kasturba Medical College, Manipal University, Manipal, India
| | | | | | | | | | | | | |
Collapse
|