1
|
Topo EJ, Basurto De Santiago C, Cao P, Wall D, Nan B. Mechanism of bacterial outer membrane exchange revealed by quantitative microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.25.650704. [PMID: 40313922 PMCID: PMC12045341 DOI: 10.1101/2025.04.25.650704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Kin recognition, the ability to distinguish self from nonself at the cellular level is critical to multicellular life. Myxococcus xanthus is a multicellular bacterium that cooperates among genetically-related cells and reduces exploitation by nonkin through outer membrane exchange (OME) of common goods and toxins. The polymorphic cell surface receptor called TraA and its partner protein TraB mediate kin recognition by OME, but its molecular mechanism remains unknown. Here we used quantitative microscopy techniques to characterize the stoichiometry of the intracellular TraAB complexes and the intercellular TraA-TraA interactions. We visualized the OME of single protein particles between cells and revealed that OME depends on the free diffusion of outer membrane (OM) contents. Based on the predicted structures, we propose a model that TraAB overcomes the repulsion between OMs by stressing the membranes and reducing the contact area, analogous to the eukaryotic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which mediate plasma membrane fusion. Our working model provides a novel pathway that leads to an underlying conserved mechanism for membrane fusion that is a foundation process for multicellularity.
Collapse
|
2
|
Lall D, Glaser MM, Higgs PI. Myxococcus xanthus fruiting body morphology is important for spore recovery after exposure to environmental stress. Appl Environ Microbiol 2024; 90:e0166024. [PMID: 39365039 PMCID: PMC11497814 DOI: 10.1128/aem.01660-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores. Myxococcus xanthus are ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium, Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions.
Collapse
Affiliation(s)
- Dave Lall
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maike M. Glaser
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Penelope I. Higgs
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
3
|
Subedi K, Roy PC, Saiz B, Basile F, Wall D. Cell-cell transfer of adaptation traits benefits kin and actor in a cooperative microbe. Proc Natl Acad Sci U S A 2024; 121:e2402559121. [PMID: 39012831 PMCID: PMC11287280 DOI: 10.1073/pnas.2402559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Microbes face many physical, chemical, and biological insults from their environments. In response, cells adapt, but whether they do so cooperatively is poorly understood. Here, we use a model social bacterium, Myxococcus xanthus, to ask whether adapted traits are transferable to naïve kin. To do so we isolated cells adapted to detergent stresses and tested for trait transfer. In some cases, strain-mixing experiments increased sibling fitness by transferring adaptation traits. This cooperative behavior depended on a kin recognition system called outer membrane exchange (OME) because mutants defective in OME could not transfer adaptation traits. Strikingly, in mixed stressed populations, the transferred trait also benefited the adapted (actor) cells. This apparently occurred by alleviating a detergent-induced stress response in kin that otherwise killed actor cells. Additionally, this adaptation trait when transferred also conferred resistance against a lipoprotein toxin delivered to targeted kin. Based on these and other findings, we propose a model for stress adaptation and how OME in myxobacteria promotes cellular cooperation in response to environmental stresses.
Collapse
Affiliation(s)
- Kalpana Subedi
- Department of Molecular Biology, University of Wyoming, Laramie, WY82071
- Department of Chemistry, University of Wyoming, Laramie, WY82071
| | - Pravas C. Roy
- Department of Molecular Biology, University of Wyoming, Laramie, WY82071
| | - Brandon Saiz
- Department of Chemistry, University of Wyoming, Laramie, WY82071
| | - Franco Basile
- Department of Chemistry, University of Wyoming, Laramie, WY82071
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY82071
| |
Collapse
|
4
|
Wang Y, Kang H, Hu J, Chen H, Zhou H, Wang Y, Ke H. Preparation of metal-organic framework combined with Portulaca oleracea L. extract electrostatically spun nanofiber membranes delayed release wound dressing. RSC Adv 2023; 13:21633-21642. [PMID: 37476048 PMCID: PMC10354497 DOI: 10.1039/d3ra01777j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we prepared a polyacrylonitrile (PAN) composite nanofiber membrane comprising Portulaca oleracea L. extract (POE) and a zinc-based metal-organic framework (MOF) by an in situ growth method as a potentially new type of wound dressing with a slow drug-release effect, to solve the problem of the burst release of drugs in wound dressings. The effects of the MOF and POE doping on the nanofiber membranes were examined using scanning electron microscopy (SEM) and FTIR spectroscopy. SEM analysis revealed the dense and uniform attachment of MOF particles to the surface of the nanofiber membrane, while FTIR spectroscopy confirmed the successful fusion of MOF and POE. Furthermore, investigations into the water contact angle and swelling property demonstrated that the incorporation of the MOF and POE enhanced the hydrophilicity of the material. The results of the in vitro release test showed that the cumulative release rate for PAN/MOF/POE60 decreased from 66.5 ± 2.34% to 32.18 ± 1.31% in the initial 4 h and from 90.54 ± 0.79% to 65.92 ± 1.95% in 72 h compared to PAN/POE, indicating a slowing down of the drug release. In addition, the antimicrobial properties of the fiber membranes were evaluated by the disc diffusion method, and it was evident that the PAN/MOF/POE nanofibers exhibited strong inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The antioxidant properties of the nanofiber membranes loaded with POE were further validated through the DPPH radical scavenging test. These findings highlight the potential application of the developed nanofiber membranes in wound dressings, offering controlled and sustained drug-release capabilities.
Collapse
Affiliation(s)
- Yize Wang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Hua Kang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Jao Hu
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Heming Chen
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Huimin Zhou
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Ying Wang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Huizhen Ke
- Fujian Engineering Research Center for Textile and Clothing, Faculty of Clothing and Design, Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University Fuzhou 350108 Fujian China
| |
Collapse
|
5
|
Kaimer C, Weltzer ML, Wall D. Two reasons to kill: predation and kin discrimination in myxobacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001372. [PMID: 37494115 PMCID: PMC10433427 DOI: 10.1099/mic.0.001372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/15/2023] [Indexed: 07/27/2023]
Abstract
Myxobacteria are social microbial predators that use cell-cell contacts to identify bacterial or fungal prey and to differentiate kin relatives to initiate cellular responses. For prey killing, they assemble Tad-like and type III-like secretion systems at contact sites. For kin discrimination (KD), they assemble outer membrane exchange complexes composed of the TraA and TraB receptors at contacts sites. A type VI secretion system and Rhs proteins also mediate KD. Following cellular recognition, these systems deliver appropriate effectors into target cells. For prey, this leads to cell death and lysis for nutrient consumption by myxobacteria. In KD, a panel of effectors are delivered, and if adjacent cells are clonal cells, resistance ensues because they express a cognate panel of immunity factors; while nonkin lack complete immunity and are intoxicated. This review compares and contrasts recent findings from these systems in myxobacteria.
Collapse
Affiliation(s)
- Christine Kaimer
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Michael L. Weltzer
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
6
|
Rolland A, Pasquier E, Malvezin P, Cassandra C, Dumas M, Dussutour A. Behavioural changes in slime moulds over time. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220063. [PMID: 36802777 PMCID: PMC9939273 DOI: 10.1098/rstb.2022.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/21/2022] [Indexed: 02/21/2023] Open
Abstract
Changes in behaviour over the lifetime of single-cell organisms have primarily been investigated in response to environmental stressors. However, growing evidence suggests that unicellular organisms undergo behavioural changes throughout their lifetime independently of the external environment. Here we studied how behavioural performances across different tasks vary with age in the acellular slime mould Physarum polycephalum. We tested slime moulds aged from 1 week to 100 weeks. First, we showed that migration speed decreases with age in favourable and adverse environments. Second, we showed that decision making and learning abilities do not deteriorate with age. Third, we revealed that old slime moulds can recover temporarily their behavioural performances if they go throughout a dormant stage or if they fuse with a young congener. Last, we observed the response of slime mould facing a choice between cues released by clone mates of different age. We found that both old and young slime moulds are attracted preferentially toward cues left by young slime moulds. Although many studies have studied behaviour in unicellular organisms, few have taken the step of looking for changes in behaviour over the lifetime of individuals. This study extends our knowledge of the behavioural plasticity of single-celled organisms and establishes slime moulds as a promising model to investigate the effect of ageing on behaviour at the cellular level. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Angèle Rolland
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Emilie Pasquier
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Paul Malvezin
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Craig Cassandra
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Mathilde Dumas
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - A. Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
7
|
Abstract
A wide range of biological systems, from microbial swarms to bird flocks, display emergent behaviors driven by coordinated movement of individuals. To this end, individual organisms interact by recognizing their kin and adjusting their motility based on others around them. However, even in the best-studied systems, the mechanistic basis of the interplay between kin recognition and motility coordination is not understood. Here, using a combination of experiments and mathematical modeling, we uncover the mechanism of an emergent social behavior in Myxococcus xanthus. By overexpressing the cell surface adhesins TraA and TraB, which are involved in kin recognition, large numbers of cells adhere to one another and form organized macroscopic circular aggregates that spin clockwise or counterclockwise. Mechanistically, TraAB adhesion results in sustained cell-cell contacts that trigger cells to suppress cell reversals, and circular aggregates form as the result of cells’ ability to follow their own cellular slime trails. Furthermore, our in silico simulations demonstrate a remarkable ability to predict self-organization patterns when phenotypically distinct strains are mixed. For example, defying naive expectations, both models and experiments found that strains engineered to overexpress different and incompatible TraAB adhesins nevertheless form mixed circular aggregates. Therefore, this work provides key mechanistic insights into M. xanthus social interactions and demonstrates how local cell contacts induce emergent collective behaviors by millions of cells. IMPORTANCE In many species, large populations exhibit emergent behaviors whereby all related individuals move in unison. For example, fish in schools can all dart in one direction simultaneously to avoid a predator. Currently, it is impossible to explain how such animals recognize kin through brain cognition and elicit such behaviors at a molecular level. However, microbes also recognize kin and exhibit emergent collective behaviors that are experimentally tractable. Here, using a model social bacterium, we engineer dispersed individuals to organize into synchronized collectives that create emergent patterns. With experimental and mathematical approaches, we explain how this occurs at both molecular and population levels. The results demonstrate how the combination of local physical interactions triggers intracellular signaling, which in turn leads to emergent behaviors on a population scale.
Collapse
|
8
|
Modular Lipoprotein Toxins Transferred by Outer Membrane Exchange Target Discrete Cell Entry Pathways. mBio 2021; 12:e0238821. [PMID: 34517761 PMCID: PMC8546572 DOI: 10.1128/mbio.02388-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria compete against related individuals by delivering toxins. In myxobacteria, a key delivery and kin discrimination mechanism is called outer membrane (OM) exchange (OME). Here, cells that display compatible polymorphic cell surface receptors recognize one another and bidirectionally transfer OM content. Included in the cargo is a suite of polymorphic SitA lipoprotein toxins. Consequently, OME between compatible cells that are not clonemates results in intoxication, while exchange between clonemates is harmonious because cells express a cognate repertoire of immunity proteins, which themselves are not transferred. SitA toxins belong to six nonhomologous families classified by sequence conservation within their N-terminal “escort domains” (EDs), while their C termini contain polymorphic nucleases that target the cytoplasmic compartment. To investigate how toxins delivered to the OM by OME translocate to the cytoplasm, we selected transposon mutants resistant to each family. Our screens identified eight genes that conferred resistance in a SitA family-specific manner. Most of these genes are predicted to localize to the cell envelope, and some resemble proteins that colicins exploit to gain cell entry. By constructing functional chimeric SitAs between families, we show that the ED determines the specificity of resistance. Importantly, a mutant that confers resistance to all six SitA families was discovered. This gene was named traC and plays an accessory role with traAB in OME. This work thus provides insight into the mechanism of kin discrimination in myxobacteria and provides working models for how SitA toxins exploit host proteins to gain cytoplasmic entry.
Collapse
|
9
|
Sah GP, Wall D. Kin recognition and outer membrane exchange (OME) in myxobacteria. Curr Opin Microbiol 2020; 56:81-88. [PMID: 32828979 DOI: 10.1016/j.mib.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
Myxobacteria conduct complex social traits that requires populations to be highly related and devoid of exploiters. To enrich for clonal cells in populations, they employ kin discrimination mechanisms. One key system involves a polymorphic cell surface receptor, TraA, which recognizes self by homotypic interactions with neighboring myxobacterial cells. Recent studies revealed that TraA and its partner TraB are fluid outer membrane proteins that coalesce into foci upon recognition of kin. The formation of foci leads to transient membrane fusion junctions and the bidirectional exchange of outer membrane components that facilitates cooperative behaviors. Additionally, expansive suites of polymorphic lipoprotein toxins are exchanged, which act as self-identity barcodes that exquisitely discriminate against nonself to assemble homogenous populations.
Collapse
Affiliation(s)
- Govind Prasad Sah
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
10
|
Cao P, Wall D. The Fluidity of the Bacterial Outer Membrane Is Species Specific: Bacterial Lifestyles and the Emergence of a Fluid Outer Membrane. Bioessays 2020; 42:e1900246. [PMID: 32363627 PMCID: PMC7392792 DOI: 10.1002/bies.201900246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/23/2020] [Indexed: 01/17/2023]
Abstract
The outer membrane (OM) is an essential barrier that guards Gram-negative bacteria from diverse environmental insults. Besides functioning as a chemical gatekeeper, the OM also contributes towards the strength and stiffness of cells and allows them to sustain mechanical stress. Largely influenced by studies of Escherichia coli, the OM is viewed as a rigid barrier where OM proteins and lipopolysaccharides display restricted mobility. Here the discussion is extended to other bacterial species, with a focus on Myxococcus xanthus. In contrast to the rigid OM paradigm, myxobacteria possess a relatively fluid OM. It is concluded that the fluidity of the OM varies across environmental species, which is likely linked to their evolution and adaptation to specific ecological niches. Importantly, a fluid OM can endow bacteria with distinct functions for cell-cell and cell-environment interactions.
Collapse
Affiliation(s)
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| |
Collapse
|
11
|
Vassallo CN, Troselj V, Weltzer ML, Wall D. Rapid diversification of wild social groups driven by toxin-immunity loci on mobile genetic elements. ISME JOURNAL 2020; 14:2474-2487. [PMID: 32565537 DOI: 10.1038/s41396-020-0699-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023]
Abstract
Many species form distinct social groups that provide fitness advantages to individuals. However, the evolutionary processes that generate new social groups are not well understood. Here we examined recently diverged natural isolates of the model social bacterium, Myxococcus xanthus, to probe the genetic mechanisms and evolutionary processes of kin discrimination that occurred naturally in soil. We show that social incompatibilities were formed from horizontal gene transfer of effectors belonging to three distinct polymorphic toxin systems; outer membrane exchange, type VI secretion and rearrangement hotspot systems. Strikingly, the unique toxin effectors and their respective immunity genes that are responsible for social incompatibilities reside on mobile genetic elements, which make up nearly all of the genotypic variation between isolates within clades. By disrupting these three toxin systems, we engineered social harmony between strains that were originally incompatible. In addition, a horizontal allele swap of a single kin recognition receptor changed social interactions and competition outcomes. Our results provide a case study for how horizontal gene transfer led to social diversification in a natural context. Finally, we show how genomic information of kin discriminatory loci can be used to predict social interactions.
Collapse
Affiliation(s)
- Christopher N Vassallo
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.,Department of Biology, Massachusetts Institute of Technology, 31 Ames St., Cambridge, MA, 02142, USA
| | - Vera Troselj
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Michael L Weltzer
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
12
|
Cossey SM, Yu YTN, Cossu L, Velicer GJ. Kin discrimination and outer membrane exchange in Myxococcus xanthus: Experimental analysis of a natural population. PLoS One 2019; 14:e0224817. [PMID: 31774841 PMCID: PMC6880969 DOI: 10.1371/journal.pone.0224817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
In some species of myxobacteria, adjacent cells sufficiently similar at the adhesin protein TraA can exchange components of their outer membranes. The primary benefits of such outer membrane exchange (OME) in natural populations are unclear, but in some OME interactions, transferred OM content can include SitA toxins that kill OME participants lacking an appropriate immunity gene. Such OME-dependent toxin transfer across Myxococcus xanthus strains that differ only in their sitBAI toxin/antitoxin cassette can mediate inter-strain killing and generate colony-merger incompatibilities (CMIs)-inter-colony border phenotypes between distinct genotypes that differ from respective self-self colony interfaces. Here we ask whether OME-dependent toxin transfer is a common cause of prevalent CMIs and antagonisms between M. xanthus natural isolates identical at TraA. We disrupted traA in eleven isolates from a cm-scale soil population and assayed whether traA disruption eliminated or reduced CMIs between swarming colonies or antagonisms between strains in mixed cultures. Among 33 isolate pairs identical at traA that form clear CMIs, in no case did functional disruption of traA in one partner detectably alter CMI phenotypes. Further, traA disruption did not alleviate strong antagonisms observed during starvation-induced fruiting-body development in seven pairs of strains identical at traA. Collectively, our results suggest that most mechanisms of interference competition and inter-colony kin discrimination in natural populations of myxobacteria do not require OME. Finally, our experiments also indicate that several closely related laboratory reference strains kill some natural isolates by toxins delivered by a shared, OME-independent type VI secretion system (T6SS), suggesting that some antagonisms between sympatric natural isolates may also involve T6SS toxins.
Collapse
Affiliation(s)
- Sarah M. Cossey
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| | - Yuen-Tsu Nicco Yu
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| | - Laura Cossu
- Department of Environmental Microbiology, Eawag, Switzerland
| | - Gregory J. Velicer
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| |
Collapse
|
13
|
Self-identity barcodes encoded by six expansive polymorphic toxin families discriminate kin in myxobacteria. Proc Natl Acad Sci U S A 2019; 116:24808-24818. [PMID: 31744876 DOI: 10.1073/pnas.1912556116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Myxobacteria are an example of how single-cell individuals can transition into multicellular life by an aggregation strategy. For these and all organisms that consist of social groups of cells, discrimination against, and exclusion of, nonself is critical. In myxobacteria, TraA is a polymorphic cell surface receptor that identifies kin by homotypic binding, and in so doing exchanges outer membrane (OM) proteins and lipids between cells with compatible receptors. However, TraA variability alone is not sufficient to discriminate against all cells, as traA allele diversity is not necessarily high among local strains. To increase discrimination ability, myxobacteria include polymorphic OM lipoprotein toxins called SitA in their delivered cargo, which poison recipient cells that lack the cognate, allele-specific SitI immunity protein. We previously characterized 3 SitAI toxin/immunity pairs that belong to 2 families. Here, we discover 4 additional SitA families. Each family is unique in sequence, but share the characteristic features of SitA: OM-associated toxins delivered by TraA. We demonstrate that, within a SitA family, C-terminal nuclease domains are polymorphic and often modular. Remarkably, sitA loci are strikingly numerous and diverse, with most genomes possessing >30 and up to 83 distinct sitAI loci. Interestingly, all SitA protein families are serially transferred between cells, allowing a SitA inhibitor cell to poison multiple targets, including cells that never made direct contact. The expansive suites of sitAI loci thus serve as identify barcodes to exquisitely discriminate against nonself to ensure populations are genetically homogenous to conduct cooperative behaviors.
Collapse
|
14
|
Cao P, Wall D. Direct visualization of a molecular handshake that governs kin recognition and tissue formation in myxobacteria. Nat Commun 2019; 10:3073. [PMID: 31300643 PMCID: PMC6626042 DOI: 10.1038/s41467-019-11108-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Many organisms regulate their social life through kin recognition, but the underlying mechanisms are poorly understood. Here, we use a social bacterium, Myxococcus xanthus, to investigate kin recognition at the molecular level. By direct visualization of a cell surface receptor, TraA, we show how these myxobacteria identify kin and transition towards multicellularity. TraA is fluid on the cell surface, and homotypic interactions between TraA from juxtaposed cells trigger the receptors to coalesce, representing a ‘molecular handshake’. Polymorphisms within TraA govern social recognition such that receptors cluster only between individuals bearing compatible alleles. TraA clusters, which resemble eukaryotic gap junctions, direct the robust exchange of cellular goods that allows heterogeneous populations to transition towards homeostasis. This work provides a conceptual framework for how microbes use a fluid outer membrane receptor to recognize and assemble kin cells into a cooperative multicellular community that resembles a tissue. Many organisms, including the bacterium Myxococcus xanthus, regulate their social life through kin recognition. Here, Cao and Wall show that these bacteria use a polymorphic and fluid cell-surface receptor to recognize and assemble kin cells into a cooperative multicellular community that resembles a tissue.
Collapse
Affiliation(s)
- Pengbo Cao
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
15
|
Wielgoss S, Fiegna F, Rendueles O, Yu YTN, Velicer GJ. Kin discrimination and outer membrane exchange in Myxococcus xanthus: A comparative analysis among natural isolates. Mol Ecol 2018; 27:3146-3158. [PMID: 29924883 DOI: 10.1111/mec.14773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023]
Abstract
Genetically similar cells of the soil bacterium Myxococcus xanthus cooperate at multiple social behaviours, including motility and multicellular development. Another social interaction in this species is outer membrane exchange (OME), a behaviour of unknown primary benefit in which cells displaying closely related variants of the outer membrane protein TraA transiently fuse and exchange membrane contents. Functionally incompatible TraA variants do not mediate OME, which led to the proposal that TraA incompatibilities determine patterns of intercellular cooperation in nature, but how this might occur remains unclear. Using natural isolates from a centimetre-scale patch of soil, we analyse patterns of TraA diversity and ask whether relatedness at TraA is causally related to patterns of kin discrimination in the form of both colony-merger incompatibilities (CMIs) and interstrain antagonisms. A large proportion of TraA functional diversity documented among global isolates is predicted to be contained within this cm-scale population. We find evidence of balancing selection on the highly variable PA14-portion of TraA and extensive transfer of traA alleles across genomic backgrounds. CMIs are shown to be common among strains identical at TraA, suggesting that CMIs are not generally caused by TraA dissimilarity. Finally, it has been proposed that interstrain antagonisms might be caused by OME-mediated toxin transfer. However, we predict that most strain pairs previously shown to exhibit strong antagonisms are incapable of OME due to TraA dissimilarity. Overall, our results suggest that most documented patterns of kin discrimination in a natural population of M. xanthus are not causally related to the TraA sequences of interactants.
Collapse
Affiliation(s)
| | - Francesca Fiegna
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Olaya Rendueles
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Microbial Evolutionary Genomics Unit, Institut Pasteur, Paris, France
| | - Yuen-Tsu N Yu
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
16
|
Vogel D, Dussutour A. Direct transfer of learned behaviour via cell fusion in non-neural organisms. Proc Biol Sci 2017; 283:rspb.2016.2382. [PMID: 28003457 DOI: 10.1098/rspb.2016.2382] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023] Open
Abstract
Cell fusion is a fundamental phenomenon observed in all eukaryotes. Cells can exchange resources such as molecules or organelles during fusion. In this paper, we ask whether a cell can also transfer an adaptive response to a fusion partner. We addressed this question in the unicellular slime mould Physarum polycephalum, in which cell-cell fusion is extremely common. Slime moulds are capable of habituation, a simple form of learning, when repeatedly exposed to an innocuous repellent, despite lacking neurons and comprising only a single cell. In this paper, we present a set of experiments demonstrating that slime moulds habituated to a repellent can transfer this adaptive response by cell fusion to individuals that have never encountered the repellent. In addition, we show that a slime mould resulting from the fusion of a minority of habituated slime moulds and a majority of unhabituated ones still shows an adaptive response to the repellent. Finally, we further reveal that fusion must last a certain time to ensure an effective transfer of the behavioural adaptation between slime moulds. Our results provide strong experimental evidence that slime moulds exhibit transfer of learned behaviour during cell fusion and raise the possibility that similar phenomena may occur in other cell-cell fusion systems.
Collapse
Affiliation(s)
- David Vogel
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France.,Unit of Social Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
17
|
Troselj V, Cao P, Wall D. Cell-cell recognition and social networking in bacteria. Environ Microbiol 2017; 20:923-933. [PMID: 29194914 DOI: 10.1111/1462-2920.14005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 01/13/2023]
Abstract
The ability to recognize self and to recognize partnering cells allows microorganisms to build social networks that perform functions beyond the capabilities of the individual. In bacteria, recognition typically involves genetic determinants that provide cell surface receptors or diffusible signalling chemicals to identify proximal cells at the molecular level that can participate in cooperative processes. Social networks also rely on discriminating mechanisms to exclude competing cells from joining and exploiting their groups. In addition to their appropriate genotypes, cell-cell recognition also requires compatible phenotypes, which vary according to environmental cues or exposures as well as stochastic processes that lead to heterogeneity and potential disharmony in the population. Understanding how bacteria identify their social partners and how they synchronize their behaviours to conduct multicellular functions is an expanding field of research. Here, we review recent progress in the field and contrast the various strategies used in recognition and behavioural networking.
Collapse
Affiliation(s)
- Vera Troselj
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Pengbo Cao
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
18
|
Whitworth DE. Group Therapy or Mass Suicide? The Sharing of Cellular Damage Between Members of a Bacterial Community. Bioessays 2017; 39. [PMID: 29116643 DOI: 10.1002/bies.201700178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, UK
| |
Collapse
|
19
|
Self-identity reprogrammed by a single residue switch in a cell surface receptor of a social bacterium. Proc Natl Acad Sci U S A 2017; 114:3732-3737. [PMID: 28320967 DOI: 10.1073/pnas.1700315114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ability to recognize close kin confers survival benefits on single-celled microbes that live in complex and changing environments. Microbial kinship detection relies on perceptible cues that reflect relatedness between individuals, although the mechanisms underlying recognition in natural populations remain poorly understood. In myxobacteria, cells identify related individuals through a polymorphic cell surface receptor, TraA. Recognition of compatible receptors leads to outer membrane exchange among clonemates and fitness consequences. Here, we investigated how a single receptor creates a diversity in recognition across myxobacterial populations. We first show that TraA requires its partner protein TraB to function in cell-cell adhesion. Recognition is shown to be traA allele-specific, where polymorphisms within TraA dictate binding selectivity. We reveal the malleability of TraA recognition, and seemingly minor changes to its variable region reprogram recognition outcomes. Strikingly, we identify a single residue (A/P205) as a molecular switch for TraA recognition. Substitutions at this position change the specificity of a diverse panel of environmental TraA receptors. In addition, we engineered a receptor with unique specificity by simply creating an A205P substitution, suggesting that modest changes in TraA can lead to diversification of new recognition groups in nature. We hypothesize that the malleable property of TraA has allowed it to evolve and create social barriers between myxobacterial populations and in turn avoid adverse interactions with relatives.
Collapse
|
20
|
Vassallo CN, Cao P, Conklin A, Finkelstein H, Hayes CS, Wall D. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife 2017; 6:29397. [PMID: 28820387 PMCID: PMC5562445 DOI: 10.7554/elife.29397] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023] Open
Abstract
Myxobacteria are known for complex social behaviors including outer membrane exchange (OME), in which cells exchange large amounts of outer membrane lipids and proteins upon contact. The TraA cell surface receptor selects OME partners based on a variable domain. However, traA polymorphism alone is not sufficient to precisely discriminate kin. Here, we report a novel family of OME-delivered toxins that promote kin discrimination of OME partners. These SitA lipoprotein toxins are polymorphic and widespread in myxobacteria. Each sitA is associated with a cognate sitI immunity gene, and in some cases a sitB accessory gene. Remarkably, we show that SitA is transferred serially between target cells, allowing the toxins to move cell-to-cell like an infectious agent. Consequently, SitA toxins define strong identity barriers between strains and likely contribute to population structure, maintenance of cooperation, and strain diversification. Moreover, these results highlight the diversity of systems evolved to deliver toxins between bacteria.
Collapse
Affiliation(s)
| | - Pengbo Cao
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Austin Conklin
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Hayley Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, United States
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, United States
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, United States,
| |
Collapse
|
21
|
Abstract
The ability of bacteria to recognize kin provides a means to form social groups. In turn these groups can lead to cooperative behaviors that surpass the ability of the individual. Kin recognition involves specific biochemical interactions between a receptor(s) and an identification molecule(s). Recognition specificity, ensuring that nonkin are excluded and kin are included, is critical and depends on the number of loci and polymorphisms involved. After recognition and biochemical perception, the common ensuing cooperative behaviors include biofilm formation, quorum responses, development, and swarming motility. Although kin recognition is a fundamental mechanism through which cells might interact, microbiologists are only beginning to explore the topic. This review considers both molecular and theoretical aspects of bacterial kin recognition. Consideration is also given to bacterial diversity, genetic relatedness, kin selection theory, and mechanisms of recognition.
Collapse
Affiliation(s)
- Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071;
| |
Collapse
|
22
|
Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: Moving, Killing, Feeding, and Surviving Together. Front Microbiol 2016; 7:781. [PMID: 27303375 PMCID: PMC4880591 DOI: 10.3389/fmicb.2016.00781] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Myxococcus xanthus, like other myxobacteria, is a social bacterium that moves and feeds cooperatively in predatory groups. On surfaces, rod-shaped vegetative cells move in search of the prey in a coordinated manner, forming dynamic multicellular groups referred to as swarms. Within the swarms, cells interact with one another and use two separate locomotion systems. Adventurous motility, which drives the movement of individual cells, is associated with the secretion of slime that forms trails at the leading edge of the swarms. It has been proposed that cellular traffic along these trails contributes to M. xanthus social behavior via stigmergic regulation. However, most of the cells travel in groups by using social motility, which is cell contact-dependent and requires a large number of individuals. Exopolysaccharides and the retraction of type IV pili at alternate poles of the cells are the engines associated with social motility. When the swarms encounter prey, the population of M. xanthus lyses and takes up nutrients from nearby cells. This cooperative and highly density-dependent feeding behavior has the advantage that the pool of hydrolytic enzymes and other secondary metabolites secreted by the entire group is shared by the community to optimize the use of the degradation products. This multicellular behavior is especially observed in the absence of nutrients. In this condition, M. xanthus swarms have the ability to organize the gliding movements of 1000s of rods, synchronizing rippling waves of oscillating cells, to form macroscopic fruiting bodies, with three subpopulations of cells showing division of labor. A small fraction of cells either develop into resistant myxospores or remain as peripheral rods, while the majority of cells die, probably to provide nutrients to allow aggregation and spore differentiation. Sporulation within multicellular fruiting bodies has the benefit of enabling survival in hostile environments, and increases germination and growth rates when cells encounter favorable conditions. Herein, we review how these social bacteria cooperate and review the main cell–cell signaling systems used for communication to maintain multicellularity.
Collapse
Affiliation(s)
- José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | | | - Elena García-Bravo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| |
Collapse
|