1
|
Wei J, Li Y. CRISPR-based gene editing technology and its application in microbial engineering. ENGINEERING MICROBIOLOGY 2023; 3:100101. [PMID: 39628916 PMCID: PMC11610974 DOI: 10.1016/j.engmic.2023.100101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 12/06/2024]
Abstract
Gene editing technology involves the modification of a specific target gene to obtain a new function or phenotype. Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-mediated technologies have provided an efficient tool for genetic engineering of cells and organisms. Here, we review the three emerging gene editing tools (ZFNs, TALENs, and CRISPR-Cas) and briefly introduce the principle, classification, and mechanisms of the CRISPR-Cas systems. Strategies for gene editing based on endogenous and exogenous CRISPR-Cas systems, as well as the novel base editor (BE), prime editor (PE), and CRISPR-associated transposase (CAST) technologies, are described in detail. In addition, we summarize recent developments in the application of CRISPR-based gene editing tools for industrial microorganism and probiotics modifications. Finally, the potential challenges and future perspectives of CRISPR-based gene editing tools are discussed.
Collapse
Affiliation(s)
- Junwei Wei
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Wang Y, Mao T, Li Y, Xiao W, Liang X, Duan G, Yang H. Characterization of 67 Confirmed Clustered Regularly Interspaced Short Palindromic Repeats Loci in 52 Strains of Staphylococci. Front Microbiol 2021; 12:736565. [PMID: 34751223 PMCID: PMC8571024 DOI: 10.3389/fmicb.2021.736565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus (S. aureus), which is one of the most important species of Staphylococci, poses a great threat to public health. Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are an adaptive immune platform to combat foreign mobile genetic elements (MGEs) such as plasmids and phages. The aim of this study is to describe the distribution and structure of CRISPR-Cas system in S. aureus, and to explore the relationship between CRISPR and horizontal gene transfer (HGT). Here, we analyzed 67 confirmed CRISPR loci and 15 companion Cas proteins in 52 strains of Staphylococci with bioinformatics methods. Comparing with the orphan CRISPR loci in Staphylococci, the strains harboring complete CRISPR-Cas systems contained multiple CRISPR loci, direct repeat sequences (DR) forming stable RNA secondary structures with lower minimum free energy (MFE), and variable spacers with detectable protospacers. In S. aureus, unlike the orphan CRISPRs away from Staphylococcal cassette chromosome mec (SCCmec), the complete CRISPR-Cas systems were in J1 region of SCCmec. In addition, we found a conserved motif 5'-TTCTCGT-3' that may protect their downstream sequences from DNA interference. In general, orphan CRISPR locus in S. aureus differed greatly from the structural characteristics of the CRISPR-Cas system. Collectively, our results provided new insight into the diversity and characterization of the CRISPR-Cas system in S. aureus.
Collapse
Affiliation(s)
- Ying Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tingting Mao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinxia Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenwei Xiao
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuan Liang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
4
|
Prakash A, Kumar M. Characterizing the transcripts of Leptospira CRISPR I-B array and its processing with endoribonuclease LinCas6. Int J Biol Macromol 2021; 182:785-795. [PMID: 33862076 DOI: 10.1016/j.ijbiomac.2021.04.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022]
Abstract
In Leptospira interrogans serovar Copenhageni, the CRISPR-Cas I-B locus possesses a CRISPR array between the two independent cas-operons. Using the reverse transcription-PCR and the in vitro endoribonuclease assay with Cas6 of Leptospira (LinCas6), we account that the CRISPR is transcriptionally active and is conventionally processed. The LinCas6 specifically excises at one site within the synthetic cognate repeat RNA or the repeats of precursor-CRISPR RNA (pre-crRNA) in the sense direction. In contrast, the antisense repeat RNA is cleaved at multiple sites. LinCas6 functions as a single turnover endoribonuclease on its repeat RNA substrate, where substitution of one of predicted active site residues (His38) resulted in reduced activity. This study highlights the comprehensive understanding of the Leptospira CRISPR array transcription and its processing by LinCas6 that is central to RNA-mediated CRISPR-Cas I-B adaptive immunity.
Collapse
Affiliation(s)
- Aman Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Zheng Y, Li J, Wang B, Han J, Hao Y, Wang S, Ma X, Yang S, Ma L, Yi L, Peng W. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Front Bioeng Biotechnol 2020; 8:62. [PMID: 32195227 PMCID: PMC7064716 DOI: 10.3389/fbioe.2020.00062] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Establishment of production platforms through prokaryotic engineering in microbial organisms would be one of the most efficient means for chemicals, protein, and biofuels production. Despite the fact that CRISPR (clustered regularly interspaced short palindromic repeats)–based technologies have readily emerged as powerful and versatile tools for genetic manipulations, their applications are generally limited in prokaryotes, possibly owing to the large size and severe cytotoxicity of the heterogeneous Cas (CRISPR-associated) effector. Nevertheless, the rich natural occurrence of CRISPR-Cas systems in many bacteria and most archaea holds great potential for endogenous CRISPR-based prokaryotic engineering. The endogenous CRISPR-Cas systems, with type I systems that constitute the most abundant and diverse group, would be repurposed as genetic manipulation tools once they are identified and characterized as functional in their native hosts. This article reviews the major progress made in understanding the mechanisms of invading DNA immunity by type I CRISPR-Cas and summarizes the practical applications of endogenous type I CRISPR-based toolkits for prokaryotic engineering.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Baiyang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiamei Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yile Hao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiangdong Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Behler J, Hess WR. Approaches to study CRISPR RNA biogenesis and the key players involved. Methods 2020; 172:12-26. [PMID: 31325492 DOI: 10.1016/j.ymeth.2019.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins provide an inheritable and adaptive immune system against phages and foreign genetic elements in many bacteria and archaea. The three stages of CRISPR-Cas immunity comprise adaptation, CRISPR RNA (crRNA) biogenesis and interference. The maturation of the pre-crRNA into mature crRNAs, short guide RNAs that target invading nucleic acids, is crucial for the functionality of CRISPR-Cas defense systems. Mature crRNAs assemble with Cas proteins into the ribonucleoprotein (RNP) effector complex and guide the Cas nucleases to the cognate foreign DNA or RNA target. Experimental approaches to characterize these crRNAs, the specific steps toward their maturation and the involved factors, include RNA-seq analyses, enzyme assays, methods such as cryo-electron microscopy, the crystallization of proteins, or UV-induced protein-RNA crosslinking coupled to mass spectrometry analysis. Complex and multiple interactions exist between CRISPR-cas-encoded specific riboendonucleases such as Cas6, Cas5d and Csf5, endonucleases with dual functions in maturation and interference such as the enzymes of the Cas12 and Cas13 families, and nucleases belonging to the cell's degradosome such as RNase E, PNPase and RNase J, both in the maturation as well as in interference. The results of these studies have yielded a picture of unprecedented diversity of sequences, enzymes and biochemical mechanisms.
Collapse
Affiliation(s)
- Juliane Behler
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
7
|
Li Y, Peng N. Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects. Front Microbiol 2019; 10:2471. [PMID: 31708910 PMCID: PMC6824031 DOI: 10.3389/fmicb.2019.02471] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
CRISPR-Cas systems adapt “memories” via spacers from viruses and plasmids to develop adaptive immunity against mobile genetic elements. Mature CRISPR RNAs guide CRISPR-associated nucleases to site-specifically cleave target DNA or RNA, providing an efficient genome engineering tool for organisms of all three kingdoms. Cas9, Cas12, and Cas13 are single proteins with multiple domains that are the most widely used CRISPR nucleases of the Class 2 system. However, these CRISPR endonucleases are large in size, leading to difficulty for manipulation and toxicity for cells. Most archaeal genomes and half of the bacterial genomes encode different types of CRISPR-Cas systems. Therefore, developing endogenous CRISPR-Cas systems-based genome editing will simplify manipulations and increase editing efficiency in prokaryotic cells. Here, we review the current applications and discuss the prospects of using endogenous CRISPR nucleases for genome engineering and CRISPR-based antimicrobials.
Collapse
Affiliation(s)
- Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Wei W, Zhang S, Fleming J, Chen Y, Li Z, Fan S, Liu Y, Wang W, Wang T, Liu Y, Ren B, Wang M, Jiao J, Chen Y, Zhou Y, Zhou Y, Gu S, Zhang X, Wan L, Chen T, Zhou L, Chen Y, Zhang XE, Li C, Zhang H, Bi L. Mycobacterium tuberculosis type III-A CRISPR/Cas system crRNA and its maturation have atypical features. FASEB J 2018; 33:1496-1509. [PMID: 29979631 DOI: 10.1096/fj.201800557rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are prokaryotic adaptive immune systems against invading nucleic acids. CRISPR locus variability has been exploited in evolutionary and epidemiological studies of Mycobacterium tuberculosis, the causative agent of tuberculosis, for over 20 yr, yet the biological function of this type III-A system is largely unexplored. Here, using cell biology and biochemical, mutagenic, and RNA-seq approaches, we show it is active in invader defense and has features atypical of type III-A systems: mature CRISPR RNA (crRNA) in its crRNA-CRISPR/Cas protein complex are of uniform length (∼71 nt) and appear not to be subject to 3'-end processing after Cas6 cleavage of repeat RNA 8 nt from its 3' end. crRNAs generated resemble mature crRNA in type I systems, having both 5' (8 nt) and 3' (28 nt) repeat tags. Cas6 cleavage of repeat RNA is ion dependent, and accurate cleavage depends on the presence of a 3' hairpin in the repeat RNA and the sequence of its stem base nucleotides. This study unveils further diversity among CRISPR/Cas systems and provides insight into the crRNA recognition mechanism in M. tuberculosis, providing a foundation for investigating the potential of a type III-A-based genome editing system.-Wei, W., Zhang, S., Fleming, J., Chen, Y., Li, Z., Fan, S., Liu, Y., Wang, W., Wang, T., Liu, Y., Ren, B., Wang, M., Jiao, J., Chen, Y., Zhou, Y., Zhou, Y., Gu, S., Zhang, X., Wan, L., Chen, T., Zhou, L., Chen, Y., Zhang, X.-E., Li, C., Zhang, H., Bi, L. Mycobacterium tuberculosis type III-A CRISPR/Cas system crRNA and its maturation have atypical features.
Collapse
Affiliation(s)
- Wenjing Wei
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhang
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Ying Chen
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zihui Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shanghua Fan
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Liu
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ting Wang
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baiguang Ren
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ming Wang
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianjian Jiao
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Chen
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Yafeng Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Shoujin Gu
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xiaoli Zhang
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Li Wan
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China; and
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China; and
| | - Yong Chen
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Xian-En Zhang
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Chuanyou Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lijun Bi
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Stomatology and Medicine, Foshan University, Foshan, China.,Guangdong Province Key Laboratory of Tuberculosis Systems Biology and Translational Medicine, Foshan, China
| |
Collapse
|
9
|
Jesser R, Behler J, Benda C, Reimann V, Hess WR. Biochemical analysis of the Cas6-1 RNA endonuclease associated with the subtype I-D CRISPR-Cas system in Synechocystis sp. PCC 6803. RNA Biol 2018. [PMID: 29517395 DOI: 10.1080/15476286.2018.1447742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Specialized RNA endonucleases are critical for efficient activity of the CRISPR-Cas defense mechanisms against invading DNA or RNA. Cas6-type enzymes are the RNA endonucleases in many type I and type III CRISPR-Cas systems. These enzymes are diverse and critical residues involved in the recognition and cleavage of RNA substrates are not universally conserved. Cas6 endonucleases associated with the CRISPR-Cas subtypes I-A, I-B, I-C, I-E and I-F, as well as III-B have been studied from three archaea and four bacteria thus far. However, until now information about subtype I-D specific Cas6 endonucleases has remained scarce. Here, we report the biochemical analysis of Cas6-1, which is specific for the crRNA maturation from the subtype I-D CRISPR-Cas system of Synechocystis sp. PCC 6803. Assays of turnover kinetics suggest a single turnover mechanism for Cas6-1. The mutation of conserved amino acids R29A, H32A-S33A and H51A revealed these as essential, whereas the parallel mutation of R175A-R176A led to a pronounced and the K155A mutation to a slight reduction in enzymatic activity. In contrast, the mutations R67A, R81A and K231A left the enzymatic activity unchanged. These results are in accordance with the predominant role of histidine residues in the active site and of positively charged residues in RNA binding. Nevertheless, the protein-RNA interaction site seems to differ from other known systems, since imidazole could not restore the mutated histidine site.
Collapse
Affiliation(s)
- Rabea Jesser
- a Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg , Schänzlestr. 1, Freiburg , Germany
| | - Juliane Behler
- a Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg , Schänzlestr. 1, Freiburg , Germany
| | - Christian Benda
- b Department of Structural Cell Biology , Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, Martinsried , Germany
| | - Viktoria Reimann
- a Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg , Schänzlestr. 1, Freiburg , Germany
| | - Wolfgang R Hess
- a Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg , Schänzlestr. 1, Freiburg , Germany.,c Freiburg Institute for Advanced Studies, University of Freiburg , Albertstr. 19, Freiburg , Germany
| |
Collapse
|
10
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 640] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Expression, Purification, Crystallization, and X-ray Structural Analysis of CRISPR-Associated Protein Cas6 from Methanocaldococcus jannaschii. CRYSTALS 2017. [DOI: 10.3390/cryst7110344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|