1
|
Ebrahimkutty M, Duan J, Nüsse H, Klingauf J, Galic M. Negatively curved cellular membranes promote BAIAP2 signaling hub assembly. NANOSCALE 2023; 15:6759-6769. [PMID: 36943331 DOI: 10.1039/d2nr05719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasma membrane deformations are associated with curvature-dependent protein enrichment that contributes to a wide array of cellular functions. While the spatio-temporal protein dynamics at membrane indentations is well characterized, relatively little is known about protein kinetics at outwardly deforming membrane sites. This is in part due to the lack of high throughput approaches to systematically probe the curvature-dependence of protein-membrane interactions. Here, we developed a nanopatterned array for multiplexed analysis of protein dynamics at negatively curved cellular membranes. Taking advantage of this robust and versatile platform, we explored how membrane shape influences the prototypic negative curvature sensing protein BAIAP2 and its effector proteins. We find assembly of multi-protein signaling hubs and increased actin polymerization at outwardly deformed membrane sections, indicative of curvature-dependent BAIAP2 activation. Collectively, this study presents technical and conceptual advancements towards a quantitative understanding of spatio-temporal protein dynamics at negatively curved membranes.
Collapse
Affiliation(s)
- Mirsana Ebrahimkutty
- Institute of Medical Physics and Biophysics, University of Muenster, Germany.
- 'Cells in Motion' Interfaculty Centre, University of Muenster, Germany
- CIM-IMPRS Graduate School, Muenster, Germany
| | - Junxiu Duan
- Institute of Medical Physics and Biophysics, University of Muenster, Germany.
- 'Cells in Motion' Interfaculty Centre, University of Muenster, Germany
- CIM-IMPRS Graduate School, Muenster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, University of Muenster, Germany.
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Muenster, Germany.
- 'Cells in Motion' Interfaculty Centre, University of Muenster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Muenster, Germany.
- 'Cells in Motion' Interfaculty Centre, University of Muenster, Germany
| |
Collapse
|
2
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
3
|
Abstract
Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA; ,
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA; , .,Field of Biomedical Engineering and Field of Biophysics, Cornell University, Ithaca, New York 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| |
Collapse
|
4
|
Berganza E, Ebrahimkutty MP, Vasantham SK, Zhong C, Wunsch A, Navarrete A, Galic M, Hirtz M. A multiplexed phospholipid membrane platform for curvature sensitive protein screening. NANOSCALE 2021; 13:12642-12650. [PMID: 34268549 DOI: 10.1039/d1nr01133b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The curvature of lipid membranes plays a key role in many relevant biological processes such as membrane trafficking, vesicular budding and host-virus interactions. In vitro studies on the membrane curvature of simplified biomimetic models in the nanometer range are challenging, due to their complicated nanofabrication processes. In this work, we propose a simple and low-cost platform for curvature sensitive protein screening, prepared through scanning probe lithography (SPL) methods, where lipid bilayer patches of different compositions can be multiplexed onto substrate areas with tailored local curvature. The curvature is imposed by anchoring nanoparticles of the desired size to the substrate prior to lithography. As a proof of principle, we demonstrate that a positive curvature membrane sensitive protein derived from the BAR domain of Nadrin2 binds selectively to lipid patches patterned on substrate areas coated with 100 nm nanoparticles. The platform opens up a path for screening curvature-dependent protein-membrane interaction studies by providing a flexible and easy to prepare substrate with control over lipid composition and membrane curvature.
Collapse
Affiliation(s)
- Eider Berganza
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kenworthy AK, Schmieder SS, Raghunathan K, Tiwari A, Wang T, Kelly CV, Lencer WI. Cholera Toxin as a Probe for Membrane Biology. Toxins (Basel) 2021; 13:543. [PMID: 34437414 PMCID: PMC8402489 DOI: 10.3390/toxins13080543] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cholera toxin B-subunit (CTxB) has emerged as one of the most widely utilized tools in membrane biology and biophysics. CTxB is a homopentameric stable protein that binds tightly to up to five GM1 glycosphingolipids. This provides a robust and tractable model for exploring membrane structure and its dynamics including vesicular trafficking and nanodomain assembly. Here, we review important advances in these fields enabled by use of CTxB and its lipid receptor GM1.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Stefanie S. Schmieder
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Krishnan Raghunathan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Ting Wang
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Christopher V. Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Wayne I. Lencer
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| |
Collapse
|
6
|
Lamparter L, Galic M. Cellular Membranes, a Versatile Adaptive Composite Material. Front Cell Dev Biol 2020; 8:684. [PMID: 32850810 PMCID: PMC7419611 DOI: 10.3389/fcell.2020.00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular membranes belong to the most vital yet least understood biomaterials of live matter. For instance, its biomechanical requirements substantially vary across species and subcellular sites, raising the question how membranes manage to adjust to such dramatic changes. Central to its adaptability at the cell surface is the interplay between the plasma membrane and the adjacent cell cortex, forming an adaptive composite material that dynamically adjusts its mechanical properties. Using a hypothetical composite material, we identify core challenges, and discuss how cellular membranes solved these tasks. We further muse how pathological changes in material properties affect membrane mechanics and cell function, before closing with open questions and future challenges arising when studying cellular membranes.
Collapse
Affiliation(s)
- Lucas Lamparter
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Müenster, Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Müenster, Münster, Germany
| |
Collapse
|
7
|
Mancinelli G, Galic M. Exploring the interdependence between self-organization and functional morphology in cellular systems. J Cell Sci 2020; 133:133/13/jcs242479. [PMID: 32620564 DOI: 10.1242/jcs.242479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All living matter is subject to continuous adaptation and functional optimization via natural selection. Consequentially, structures with close morphological resemblance repeatedly appear across the phylogenetic tree. How these designs emerge at the cellular level is not fully understood. Here, we explore core concepts of functional morphology and discuss its cause and consequences, with a specific focus on emerging properties of self-organizing systems as the potential driving force. We conclude with open questions and limitations that are present when studying shape-function interdependence in single cells and cellular ensembles.
Collapse
Affiliation(s)
- Gloria Mancinelli
- 'Cells in Motion' Interfaculty Centre, University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, Medical Faculty, University of Muenster, 49149 Muenster, Germany.,CIM-IMRPS Graduate Program, 48149 Muenster, Germany
| | - Milos Galic
- 'Cells in Motion' Interfaculty Centre, University of Muenster, 48149 Muenster, Germany .,Institute of Medical Physics and Biophysics, Medical Faculty, University of Muenster, 49149 Muenster, Germany
| |
Collapse
|