1
|
Brancato D, Bruno F, Coniglio E, Sturiale V, Saccone S, Federico C. The Chromatin Organization Close to SNP rs12913832, Involved in Eye Color Variation, Is Evolutionary Conserved in Vertebrates. Int J Mol Sci 2024; 25:6602. [PMID: 38928306 PMCID: PMC11204186 DOI: 10.3390/ijms25126602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The most significant genetic influence on eye color pigmentation is attributed to the intronic SNP rs12913832 in the HERC2 gene, which interacts with the promoter region of the contiguous OCA2 gene. This interaction, through the formation of a chromatin loop, modulates the transcriptional activity of OCA2, directly affecting eye color pigmentation. Recent advancements in technology have elucidated the precise spatial organization of the genome within the cell nucleus, with chromatin architecture playing a pivotal role in regulating various genome functions. In this study, we investigated the organization of the chromatin close to the HERC2/OCA2 locus in human lymphocyte nuclei using fluorescence in situ hybridization (FISH) and high-throughput chromosome conformation capture (Hi-C) data. The 3 Mb of genomic DNA that belonged to the chromosomal region 15q12-q13.1 revealed the presence of three contiguous chromatin loops, which exhibited a different level of compaction depending on the presence of the A or G allele in the SNP rs12913832. Moreover, the analysis of the genomic organization of the genes has demonstrated that this chromosomal region is evolutionarily highly conserved, as evidenced by the analysis of syntenic regions in species from other Vertebrate classes. Thus, the role of rs12913832 variant is relevant not only in determining the transcriptional activation of the OCA2 gene but also in the chromatin compaction of a larger region, underscoring the critical role of chromatin organization in the proper regulation of the involved genes. It is crucial to consider the broader implications of this finding, especially regarding the potential regulatory role of similar polymorphisms located within intronic regions, which do not influence the same gene by modulating the splicing process, but they regulate the expression of adjacent genes. Therefore, caution should be exercised when utilizing whole-exome sequencing for diagnostic purposes, as intron sequences may provide valuable gene regulation information on the region where they reside. Thus, future research efforts should also be directed towards gaining a deeper understanding of the precise mechanisms underlying the role and mode of action of intronic SNPs in chromatin loop organization and transcriptional regulation.
Collapse
Affiliation(s)
| | | | | | | | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (F.B.); (E.C.); (V.S.); (C.F.)
| | | |
Collapse
|
2
|
Bernaola-Galván P, Carpena P, Gómez-Martín C, Oliver JL. Compositional Structure of the Genome: A Review. BIOLOGY 2023; 12:849. [PMID: 37372134 PMCID: PMC10295253 DOI: 10.3390/biology12060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
As the genome carries the historical information of a species' biotic and environmental interactions, analyzing changes in genome structure over time by using powerful statistical physics methods (such as entropic segmentation algorithms, fluctuation analysis in DNA walks, or measures of compositional complexity) provides valuable insights into genome evolution. Nucleotide frequencies tend to vary along the DNA chain, resulting in a hierarchically patchy chromosome structure with heterogeneities at different length scales that range from a few nucleotides to tens of millions of them. Fluctuation analysis reveals that these compositional structures can be classified into three main categories: (1) short-range heterogeneities (below a few kilobase pairs (Kbp)) primarily attributed to the alternation of coding and noncoding regions, interspersed or tandem repeats densities, etc.; (2) isochores, spanning tens to hundreds of tens of Kbp; and (3) superstructures, reaching sizes of tens of megabase pairs (Mbp) or even larger. The obtained isochore and superstructure coordinates in the first complete T2T human sequence are now shared in a public database. In this way, interested researchers can use T2T isochore data, as well as the annotations for different genome elements, to check a specific hypothesis about genome structure. Similarly to other levels of biological organization, a hierarchical compositional structure is prevalent in the genome. Once the compositional structure of a genome is identified, various measures can be derived to quantify the heterogeneity of such structure. The distribution of segment G+C content has recently been proposed as a new genome signature that proves to be useful for comparing complete genomes. Another meaningful measure is the sequence compositional complexity (SCC), which has been used for genome structure comparisons. Lastly, we review the recent genome comparisons in species of the ancient phylum Cyanobacteria, conducted by phylogenetic regression of SCC against time, which have revealed positive trends towards higher genome complexity. These findings provide the first evidence for a driven progressive evolution of genome compositional structure.
Collapse
Affiliation(s)
- Pedro Bernaola-Galván
- Department of Applied Physics II and Institute Carlos I for Theoretical and Computational Physics, University of Málaga, 29071 Málaga, Spain; (P.B.-G.); (P.C.)
| | - Pedro Carpena
- Department of Applied Physics II and Institute Carlos I for Theoretical and Computational Physics, University of Málaga, 29071 Málaga, Spain; (P.B.-G.); (P.C.)
| | - Cristina Gómez-Martín
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Genetics, Faculty of Sciences, 18071 and Laboratory of Bioinformatics, Institute of Biotechnology, Center of Biomedical Research, University of Granada, 18100 Granada, Spain
| | - Jose L. Oliver
- Department of Genetics, Faculty of Sciences, 18071 and Laboratory of Bioinformatics, Institute of Biotechnology, Center of Biomedical Research, University of Granada, 18100 Granada, Spain
| |
Collapse
|
3
|
Micheli G, Camilloni G. Can Introns Stabilize Gene Duplication? BIOLOGY 2022; 11:941. [PMID: 35741463 PMCID: PMC9220161 DOI: 10.3390/biology11060941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Gene duplication is considered one of the most important events that determine the evolution of genomes. However, the neo-duplication condition of a given gene is particularly unstable due to recombination events. Several mechanisms have been proposed to justify this step. In this "opinion article" we propose a role for intron sequences in stabilizing gene duplication by limiting and reducing the identity of the gene sequence between the two duplicated copies. A review of the topic and a detailed hypothesis are presented.
Collapse
Affiliation(s)
- Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro 5, 00185 Roma, Italy;
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
4
|
Bernardi G. The "Genomic Code": DNA Pervasively Moulds Chromatin Structures Leaving no Room for "Junk". Life (Basel) 2021; 11:342. [PMID: 33924668 PMCID: PMC8070607 DOI: 10.3390/life11040342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The chromatin of the human genome was analyzed at three DNA size levels. At the first, compartment level, two "gene spaces" were found many years ago: A GC-rich, gene-rich "genome core" and a GC-poor, gene-poor "genome desert", the former corresponding to open chromatin centrally located in the interphase nucleus, the latter to closed chromatin located peripherally. This bimodality was later confirmed and extended by the discoveries (1) of LADs, the Lamina-Associated Domains, and InterLADs; (2) of two "spatial compartments", A and B, identified on the basis of chromatin interactions; and (3) of "forests and prairies" characterized by high and low CpG islands densities. Chromatin compartments were shown to be associated with the compositionally different, flat and single- or multi-peak DNA structures of the two, GC-poor and GC-rich, "super-families" of isochores. At the second, sub-compartment, level, chromatin corresponds to flat isochores and to isochore loops (due to compositional DNA gradients) that are susceptible to extrusion. Finally, at the short-sequence level, two sets of sequences, GC-poor and GC-rich, define two different nucleosome spacings, a short one and a long one. In conclusion, chromatin structures are moulded according to a "genomic code" by DNA sequences that pervade the genome and leave no room for "junk".
Collapse
Affiliation(s)
- Giorgio Bernardi
- Science Department, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy; ; Tel.: +39-33-540-5892
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
5
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
6
|
Katsura Y, Ikemura T, Kajitani R, Toyoda A, Itoh T, Ogata M, Miura I, Wada K, Wada Y, Satta Y. Comparative genomics of Glandirana rugosa using unsupervised AI reveals a high CG frequency. Life Sci Alliance 2021; 4:4/5/e202000905. [PMID: 33712508 PMCID: PMC7994367 DOI: 10.26508/lsa.202000905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022] Open
Abstract
Genome sequencing of a unique frog (Glandirana rugosa) having XY/ZW systems within the species and comparative genomics with other six frogs were performed using a batch-learning self-organizing map, which is unsupervised AI for oligonucleotide compositions, to clarify its genome characteristics. The Japanese wrinkled frog (Glandirana rugosa) is unique in having both XX-XY and ZZ-ZW types of sex chromosomes within the species. The genome sequencing and comparative genomics with other frogs should be important to understand mechanisms of turnover of sex chromosomes within one species or during a short period. In this study, we analyzed the newly sequenced genome of G. rugosa using a batch-learning self-organizing map which is unsupervised artificial intelligence for oligonucleotide compositions. To clarify genome characteristics of G. rugosa, we compared its short oligonucleotide compositions in all 1-Mb genomic fragments with those of other six frog species (Pyxicephalus adspersus, Rhinella marina, Spea multiplicata, Leptobrachium leishanense, Xenopus laevis, and Xenopus tropicalis). In G. rugosa, we found an Mb-level large size of repeat sequences having a high identity with the W chromosome of the African bullfrog (P. adspersus). Our study concluded that G. rugosa has unique genome characteristics with a high CG frequency, and its genome is assumed to heterochromatinize a large size of genome via methylataion of CG.
Collapse
Affiliation(s)
- Yukako Katsura
- Primate Research Institute, Kyoto University, Inuyama-shi, Japan .,Amphibian Research Center, Hiroshima University, Hiroshima-shi, Japan.,Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University For Advanced Studies (SOKENDAI), Shonankokuraimura, Hayama-machi, Japan
| | - Toshimichi Ikemura
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Japan
| | - Rei Kajitani
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Tokyo-to, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima-shi, Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Tokyo-to, Japan
| | | | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Hiroshima-shi, Japan
| | - Kennosuke Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Japan
| | - Yoshiko Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University For Advanced Studies (SOKENDAI), Shonankokuraimura, Hayama-machi, Japan
| |
Collapse
|
7
|
Ayad LAK, Dourou AM, Arhondakis S, Pissis SP. IsoXpressor: A Tool to Assess Transcriptional Activity within Isochores. Genome Biol Evol 2020; 12:1573-1578. [PMID: 32857856 DOI: 10.1093/gbe/evaa171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 01/20/2023] Open
Abstract
Genomes are characterized by large regions of homogeneous base compositions known as isochores. The latter are divided into GC-poor and GC-rich classes linked to distinct functional and structural properties. Several studies have addressed how isochores shape function and structure. To aid in this important subject, we present IsoXpressor, a tool designed for the analysis of the functional property of transcription within isochores. IsoXpressor allows users to process RNA-Seq data in relation to the isochores, and it can be employed to investigate any biological question of interest for any species. The results presented herein as proof of concept are focused on the preimplantation process in Homo sapiens (human) and Macaca mulatta (rhesus monkey).
Collapse
Affiliation(s)
| | | | | | - Solon P Pissis
- CWI, Amsterdam, The Netherlands.,Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Beato M, Wright RHG, Dily FL. 90 YEARS OF PROGESTERONE: Molecular mechanisms of progesterone receptor action on the breast cancer genome. J Mol Endocrinol 2020; 65:T65-T79. [PMID: 32485671 PMCID: PMC7354705 DOI: 10.1530/jme-19-0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Gene regulation by steroid hormones has been at the forefront in elucidating the intricacies of transcriptional regulation in eukaryotes ever since the discovery by Karlson and Clever that the insect steroid hormone ecdysone induces chromatin puffs in giant chromosomes. After the successful cloning of the hormone receptors toward the end of the past century, detailed mechanistic insight emerged in some model systems, in particular the MMTV provirus. With the arrival of next generation DNA sequencing and the omics techniques, we have gained even further insight into the global cellular response to steroid hormones that in the past decades also extended to the function of the 3D genome topology. More recently, advances in high resolution microcopy, single cell genomics and the new vision of liquid-liquid phase transitions in the context of nuclear space bring us closer than ever to unravelling the logic of gene regulation and its complex integration of global cellular signaling networks. Using the function of progesterone and its cellular receptor in breast cancer cells, we will briefly summarize the history and describe the present extent of our knowledge on how regulatory proteins deal with the chromatin structure to gain access to DNA sequences and interpret the genomic instructions that enable cells to respond selectively to external signals by reshaping their gene regulatory networks.
Collapse
Affiliation(s)
- Miguel Beato
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roni H G Wright
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
| | - François Le Dily
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
| |
Collapse
|
9
|
Speijer D. Bad Faith Reasoning, Predictable Chaos, and the Truth. Bioessays 2020; 42:e2000040. [DOI: 10.1002/bies.202000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, Amsterdam UMC University of Amsterdam Meibergdreef 15 Amsterdam AZ 1105 The Netherlands
| |
Collapse
|
10
|
Shuffling type of biological evolution based on horizontal gene transfer and the biosphere gene pool hypothesis. Biosystems 2020; 193-194:104131. [DOI: 10.1016/j.biosystems.2020.104131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
|