1
|
Renzi JJ, Morton JP, Bergman JL, Rowell D, Iversen ES, Gaskins LC, Hoehne-Diana J, Silliman BR. An abundant mutualist can protect corals from multiple stressors. Proc Biol Sci 2025; 292:20242936. [PMID: 39933587 DOI: 10.1098/rspb.2024.2936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Mutualisms can increase the ability of foundation species to resist individual stressors, but it remains unclear whether mutualisms can also ameliorate co-occurring stressors for habitat-forming species. To examine whether a suspected mutualist could improve foundation species' resistance to multiple stressors, we tested how a common coral-dwelling crab affected corals exposed to macroalgal contact and physical wounding during a widespread heat stress event using flow-through tanks supplied with seawater from a nearby reef flat. High temperatures on the reef flat, which raised the temperature in our tanks, appeared to trigger rapid tissue loss in experimental corals, but the amount of tissue lost by corals was strongly determined by treatment. Macroalgal contact increased, while the presence of a crab decreased, the amount of tissue lost. Although the effect of wounding was not strong in isolation, when wounding occurred in the presence of a crab, coral tissue loss unexpectedly decreased below that of all other treatments. We propose that wounding increased coral resistance to stress by attracting crabs-a result that appeared supported in a field experiment. These results highlight that mutualisms can interact with stressors in unexpected ways, buffering the effects of both local and global stressors on foundation species.
Collapse
Affiliation(s)
- Julianna J Renzi
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Joseph P Morton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Jessica L Bergman
- Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Devin Rowell
- School of the Environment, University of Queensland, St Lucia, Queensland, Australia
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Leo C Gaskins
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Juliana Hoehne-Diana
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Denis H, Selmoni O, Gossuin H, Jauffrais T, Butler CC, Lecellier G, Berteaux-Lecellier V. Climate adaptive loci revealed by seascape genomics correlate with phenotypic variation in heat tolerance of the coral Acropora millepora. Sci Rep 2024; 14:22179. [PMID: 39333135 PMCID: PMC11436834 DOI: 10.1038/s41598-024-67971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
One of the main challenges in coral reef conservation and restoration is the identification of coral populations resilient under global warming. Seascape genomics is a powerful tool to uncover genetic markers potentially involved in heat tolerance among large populations without prior information on phenotypes. Here, we aimed to provide first insights on the role of candidate heat associated loci identified using seascape genomics in driving the phenotypic response of Acropora millepora from New Caledonia to thermal stress. We subjected 7 colonies to a long-term ex-situ heat stress assay (4 °C above the maximum monthly mean) and investigated their physiological response along with their Symbiodiniaceae communities and genotypes. Despite sharing similar thermal histories and associated symbionts, these conspecific individuals differed greatly in their tolerance to heat stress. More importantly, the clustering of individuals based on their genotype at heat-associated loci matched the phenotypic variation in heat tolerance. Colonies that sustained on average lower mortality, higher Symbiodiniaceae/chlorophyll concentrations and photosynthetic efficiency under prolonged heat stress were also the closest based on their genotypes, although the low sample size prevented testing loci predictive accuracy. Together these preliminary results support the relevance of coupling seascape genomics and long-term heat stress experiments in the future, to evaluate the effect size of candidate heat associated loci and pave the way for genomic predictive models of corals heat tolerance.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia.
- Ecole Doctorale 129, SU Sorbonne Université, 4, Place Jussieu, 75252, Paris, France.
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), EPFL, Lausanne, Switzerland
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Hugues Gossuin
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Thierry Jauffrais
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, BP R4 98 851, Nouméa, New Caledonia
| | | |
Collapse
|
3
|
Page CE, Anderson E, Ainsworth TD. Building living systematic reviews and reporting standards for comparative microscopic analysis of white diseases in hard corals. Ecol Evol 2024; 14:e11616. [PMID: 38975266 PMCID: PMC11224507 DOI: 10.1002/ece3.11616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Over the last 4 decades, coral disease research has continued to provide reports of diseases, the occurrence and severity of disease outbreaks and associated disease signs. Histology using systematic protocols is a gold standard for the microscopic assessment of diseases in veterinary and medical research, while also providing valuable information on host condition. However, uptake of histological analysis for coral disease remains limited. Increasing disease outbreaks on coral reefs as human impacts intensify highlights a need to understand the use of histology to date in coral disease research. Here, we apply a systematic approach to collating, mapping and reviewing histological methods used to study coral diseases with 'white' signs (i.e., white diseases) in hard coral taxa and map research effort in this field spanning study design, sample processing and analysis in the 33 publications identified between 1984 and 2022. We find that studies to date have not uniformly detailed methodologies, and terminology associated with reporting and disease description is inconsistent between studies. Combined these limitations reduce study repeatability, limiting the capacity for researchers to compare disease reports. A primary outcome of this study is the provision of transparent and repeatable protocols for systematically reviewing literature associated with white diseases of hard coral taxa, and development of recommendations for standardised reporting procedures with the aim of increasing uptake of histology in addition to allowing for ongoing comparative analysis through living systematic reviews for the coral disease field.
Collapse
Affiliation(s)
- C. E. Page
- School of Biological, Earth and Environmental Sciences (BEES)University of New South Wales (UNSW)KensingtonNew South WalesAustralia
| | - E. Anderson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - T. D. Ainsworth
- School of Biological, Earth and Environmental Sciences (BEES)University of New South Wales (UNSW)KensingtonNew South WalesAustralia
| |
Collapse
|
4
|
Mellin C, Brown S, Cantin N, Klein-Salas E, Mouillot D, Heron SF, Fordham DA. Cumulative risk of future bleaching for the world's coral reefs. SCIENCE ADVANCES 2024; 10:eadn9660. [PMID: 38924396 PMCID: PMC11204209 DOI: 10.1126/sciadv.adn9660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Spatial and temporal patterns of future coral bleaching are uncertain, hampering global conservation efforts to protect coral reefs against climate change. Our analysis of daily projections of ocean warming establishes the severity, annual duration, and onset of severe bleaching risk for global coral reefs this century, pinpointing vital climatic refugia. We show that low-latitude coral regions are most vulnerable to thermal stress and will experience little reprieve from climate mitigation. By 2080, coral bleaching is likely to start on most reefs in spring, rather than late summer, with year-round bleaching risk anticipated to be high for some low-latitude reefs regardless of global efforts to mitigate harmful greenhouse gasses. By identifying Earth's reef regions that are at lowest risk of accelerated bleaching, our results will prioritize efforts to limit future loss of coral reef biodiversity.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stuart Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Neal Cantin
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, IUF, Paris 75231, France
| | - Scott F. Heron
- Physics and Marine Geophysical Laboratory, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Damien A. Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Denis H, Bay LK, Mocellin VJL, Naugle MS, Lecellier G, Purcell SW, Berteaux-Lecellier V, Howells EJ. Thermal tolerance traits of individual corals are widely distributed across the Great Barrier Reef. Proc Biol Sci 2024; 291:20240587. [PMID: 39257340 PMCID: PMC11463214 DOI: 10.1098/rspb.2024.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 09/12/2024] Open
Abstract
Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- ED 129, Sorbonne Université, 4, Place Jussieu, Paris75252, France
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Melissa S. Naugle
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- Institut de Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, NouméaBP R4 98 851, New Caledonia
| | - Steven W. Purcell
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | | | - Emily J. Howells
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
6
|
Brown KT, Barott KL. The Costs and Benefits of Environmental Memory for Reef-Building Corals Coping with Recurring Marine Heatwaves. Integr Comp Biol 2022; 62:1748-1755. [PMID: 35661887 DOI: 10.1093/icb/icac074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Marine heatwaves are occurring more frequently as climate change intensifies, resulting in global mass coral bleaching events several times per decade. Despite the time between marine heatwaves decreasing, there is evidence that reef-building corals can develop increased bleaching resistance across repetitive marine heatwaves. This phenomenon of acclimatization via environmental memory may be an important strategy to ensure coral persistence; however, we still understand very little about the apparent acclimatization or, conversely, sensitization (i.e., stress accumulation or weakening) of reef-building corals to consecutive heatwaves and its implications for the trajectory and resilience of coral reefs. Here, we highlight that not only will some corals become stress hardened via marine heatwaves, but many other individuals will suffer sensitization during repeat heatwaves that further exacerbates their stress response during repeat events and depresses fitness. Under current and predicted climate change, it is necessary to gain a better understanding of the acclimatization vs. sensitization trajectories of different species and individuals on the reef, as well as identify whether changes in bleaching susceptibility relates to physiological acclimatization, trade-offs with other biological processes, and ultimately coral persistence in the Anthropocene.
Collapse
Affiliation(s)
- Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,School of Biological Sciences, University of Queensland, St. Lucia , QLD 4072, Australia
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Brown KT, Eyal G, Dove SG, Barott KL. Fine-scale heterogeneity reveals disproportionate thermal stress and coral mortality in thermally variable reef habitats during a marine heatwave. CORAL REEFS (ONLINE) 2022; 42:131-142. [PMID: 36415309 PMCID: PMC9672654 DOI: 10.1007/s00338-022-02328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Increasing ocean temperatures threaten coral reefs globally, but corals residing in habitats that experience high thermal variability are thought to be better adapted to survive climate-induced heat stress. Here, we used long-term ecological observations and in situ temperature data from Heron Island, southern Great Barrier Reef to investigate how temperature dynamics within various thermally variable vs. thermally stable reef habitats change during a marine heatwave and the resulting consequences for coral community survival. During the heatwave, thermally variable habitats experienced larger surges in daily mean and maxima temperatures compared to stable sites, including extreme hourly incursions up to 36.5 °C. The disproportionate increase in heat stress in variable habitats corresponded with greater subsequent declines in hard coral cover, including a three-times greater decline within the thermally variable Reef Flat (70%) and Deep Lagoon (83%) than within thermally stable habitats along sheltered and exposed areas of the reef slope (0.3-19%). Interestingly, the thermally variable Reef Crest experienced comparatively small declines (26%), avoiding the most severe tidal ponding and resultant heat stress likely due to proximity to the open ocean equating to lower seawater residence times, greater mixing, and/or increased flow. These results highlight that variable thermal regimes, and any acclimatization or adaptation to elevated temperatures that may lead to, do not necessarily equate to protection against bleaching and mortality during marine heatwaves. Instead, thermally stable habitats that have greater seawater exchange with the open ocean may offer the most protection to corals during the severe marine heatwaves that accompany a changing climate. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00338-022-02328-6.
Collapse
Affiliation(s)
- Kristen T. Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
- School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St. Lucia, QLD 4072 Australia
| | - Gal Eyal
- School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St. Lucia, QLD 4072 Australia
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Sophie G. Dove
- School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St. Lucia, QLD 4072 Australia
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
8
|
Brown KT, Mello-Athayde MA, Sampayo EM, Chai A, Dove S, Barott KL. Environmental memory gained from exposure to extreme pCO 2 variability promotes coral cellular acid-base homeostasis. Proc Biol Sci 2022; 289:20220941. [PMID: 36100023 PMCID: PMC9470260 DOI: 10.1098/rspb.2022.0941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.
Collapse
Affiliation(s)
- Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matheus A Mello-Athayde
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aaron Chai
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sophie Dove
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|